WCSLIB 4.7

Generated by Doxygen 1.5.6

Mon Feb 7 18:03:56 2011

CONTENTS i

Contents
1 WCSLIB 4.7 and PGSBOX 4.7 1
L1 Contents o o e e e e e e e e 1
1.2 Copyright e e 2
2 Deprecated List 2
3 Data Structure Index 4
3.1 DataStructures e e e e e e e e 4
4 File Index 5
4.1 FileList o oo e 5
5 Data Structure Documentation 6
5.1 celprm Struct Reference 6
5.1.1 Detailed Description L 6
5.1.2 Field Documentation e 6
5.2 fitskey Struct Reference 8
5.2.1 Detailed Description e e 8
5.2.2 Field Documentation 8
5.3 fitskeyid Struct Reference L oo 12
5.3.1 Detailed Description 12
5.3.2 Field Documentation e 12
5.4 linprm Struct Reference L. 12
5.4.1 Detailed Description 13
5.4.2 Field Documentation e 13
5.5 prprm StructReferenceo 15
5.5.1 Detailed Description e e 16
5.5.2 Field Documentation e 16
5.6 pscard StructReference Lo oL 18
5.6.1 Detailed Description e 19
5.6.2 Field Documentation e 19
5.7 pvcard Struct Reference 19
5.7.1 Detailed Description 19
5.7.2 Field Documentation 19
5.8 spcprm Struct Reference 20
5.8.1 Detailed Description e 20
5.8.2 Field Documentation 20

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

CONTENTS ii

6

5.9 spxprm Struct Reference 22
5.9.1 Detailed Description e 23
5.9.2 Field Documentation e 24
5.10 tabprm Struct Reference 27
5.10.1 Detailed Descriptiono 28
5.10.2 Field Documentation e 28
5.11 wesprm Struct Reference L 31
5.11.1 Detailed Description e e e 32
5.11.2 Field Documentation i 33
5.12 wtbarr Struct Reference L. 43
5.12.1 Detailed Description e 43
5.12.2 Field Documentation e 43
File Documentation 44
6.1 celhFileReference e 44
6.1.1 Detailed Description 46
6.1.2 Define Documentation 46
6.1.3 Function Documentation 47
6.1.4 Variable Documentation L 49
6.2 fitshdrhFileReference 49
6.2.1 Detailed Description oL 50
6.2.2 Define Documentation e 50
6.2.3 Typedef Documentation 51
6.2.4 Function Documentation L o 51
6.2.5 Variable Documentation 53
6.3 getwestabh File Reference oo oo 53
6.3.1 Detailed Description 53
6.3.2 Function Documentation L L 54
6.4 linhFileReference L 55
6.4.1 Detailed Description 56
6.4.2 Define Documentation e 56
6.4.3 Function Documentation 57
6.4.4 Variable Documentation Lo 60
6.5 loghFileReference L 61
6.5.1 Detailed Description o 61
6.5.2 Function Documentation Lo 61
6.5.3 Variable Documentation 62

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

CONTENTS iii

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

prj.hFileReference oL 62
6.6.1 Detailed Description 69
6.6.2 Define Documentation o 71
6.6.3 Function Documentation Lo 72
6.6.4 Variable Documentation L Lo 84
spc.chFileReference e 85
6.7.1 Detailed Description 86
6.7.2 Define Documentation 88
6.7.3 Function Documentation 89
6.7.4 Variable Documentation L 94
sph.h File Reference 94
6.8.1 Detailed Description oL 95
6.8.2 Function Documentation 95
spx.h File Reference 98
6.9.1 Detailed Description 100
6.9.2 Define Documentation 101
6.9.3 Function Documentation L L 101
6.9.4 Variable Documentation 106
tabh File Reference 106
6.10.1 Detailed Description e e 107
6.10.2 Define Documentation 107
6.10.3 Function Documentation Lo 109
6.10.4 Variable Documentation 112
weshFileReference o o o0 L 112
6.11.1 Detailed Description e 114
6.11.2 Define Documentation L 115
6.11.3 Function Documentation 117
6.11.4 Variable Documentation L o 124
wesfix.h File Reference 0o L o 125
6.12.1 Detailed Description 126
6.12.2 Define Documentation 127
6.12.3 Function Documentation L 127
6.12.4 Variable Documentation L L 131
weshdrh File Reference o o 0 0 0 0oL 131
6.13.1 Detailed Description oL 133
6.13.2 Define Documentation 134

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

1 WCSLIB 4.7 and PGSBOX 4.7 1

6.13.3 Function Documentation Lo o 137
6.13.4 Variable Documentation 151
6.14 weslibh File Reference 151
6.14.1 Detailed Description e 151
6.15 wesmath.h File Referenceo 152
6.15.1 Detailed Description e e 152
6.15.2 Define Documentation 152
6.16 wesprintf.h File Reference L 153
6.16.1 Detailed Description 153
6.16.2 Function Documentation L L 153
6.17 westrigh File Reference o 154
6.17.1 Detailed Description oL 155
6.17.2 Define Documentation e 155
6.17.3 Function Documentation 155
6.18 wesunits.h FileReference oo 157
6.18.1 Detailed Description 159
6.18.2 Define Documentation e 159
6.18.3 Function Documentation L 161
6.18.4 Variable Documentation L L 164
6.19 wesutiLh File Reference 165
6.19.1 Detailed Description 166
6.19.2 Function Documentation Lo 166

1 WCSLIB 4.7 and PGSBOX 4.7

1.1 Contents

¢ Introduction

* FITS-WCS and related software

* Overview of WCSLIB

* WCSLIB data structures

e Memory management

* Vector API

* Thread-safety

» Example code, testing and verification
* WCSLIB Fortran wrappers

* PGSBOX

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

1.2 Copyright

1.2 Copyright

WCSLIB 4.7 - an implementation of the FITS WCS standard.
Copyright (C) 1995-2011, Mark Calabretta

WCSLIB is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free

Software Foundation, either version 3 of the License, or (at your option)
any later version.

WCSLIB is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details.

You should have received a copy of the GNU Lesser General Public License
along with WCSLIB. If not, see <http://www.gnu.org/licenses/>.

Correspondence concerning WCSLIB may be directed to:
Internet email: mcalabre@atnf.csiro.au
Postal address: Dr. Mark Calabretta
Australia Telescope National Facility, CSIRO
PO Box 76
Epping NSW 1710
AUSTRALIA

2 Deprecated List

Global celini_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.
Global celprt_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.
Global celset_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.
Global celx2s_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.
Global cels2x_errmsg Added for backwards compatibility, use cel_errmsg directly now instead.
Global FITSHDR_CARD Added for backwards compatibility, use FITSHDR_KEYREC instead.
Global linini_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.
Global lincpy_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.
Global linfree_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linprt_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

2 Deprecated List

Global linset_errmsg Added for backwards compatibility, use lin_errmsg directly now instead.

Global linp2x_errmsg

Global linx2p_errmsg

Global prjini_errmsg

Global prjprt_errmsg

Global prjset_errmsg

Global prjx2s_errmsg

Global prjs2x_errmsg

Global spcini_errmsg

Global spcprt_errmsg

Global spcset_errmsg

Global spcx2s_errmsg

Global spcs2x_errmsg

Added for backwards compatibility, use lin_errmsg directly now instead.

Added for backwards compatibility, use lin_errmsg directly now instead.

Added for backwards compatibility, use prj_errmsg directly now instead.

Added for backwards compatibility, use prj_errmsg directly now instead.

Added for backwards compatibility, use prj_errmsg directly now instead.

Added for backwards compatibility, use prj_errmsg directly now instead.

Added for backwards compatibility, use prj_errmsg directly now instead.

Added for backwards compatibility, use spc_errmsg directly now instead.

Added for backwards compatibility, use spc_errmsg directly now instead.

Added for backwards compatibility, use spc_errmsg directly now instead.

Added for backwards compatibility, use spc_errmsg directly now instead.

Added for backwards compatibility, use spc_errmsg directly now instead.

Global tabini_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabcpy_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabfree_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabprt_errmsg

Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabset_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

3 Data Structure Index

Global tabx2s_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global tabs2x_errmsg Added for backwards compatibility, use tab_errmsg directly now instead.

Global wcsini_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wessub_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wescopy_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wcsfree_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wesprt_errmsg Added for backwards compatibility, use wcs_errmsg directly now instead.

Global wcsset_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wesp2s_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wess2p_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global wesmix_errmsg Added for backwards compatibility, use wes_errmsg directly now instead.

Global cylfix_errmsg Added for backwards compatibility, use wesfix_errmsg directly now instead.

3 Data Structure Index

3.1 Data Structures

Here are the data structures with brief descriptions:
celprm (Celestial transformation parameters)
fitskey (Keyword/value information)
fitskeyid (Keyword indexing)
linprm (Linear transformation parameters)
prjprm (Projection parameters)

pscard (Store for PSi_ma keyrecords)

12

12

15

18

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

4 File Index 5
pvcard (Store for PVi_ma keyrecords) 19
spcprm (Spectral transformation parameters) 20
spxprm (Spectral variables and their derivatives) 22
tabprm (Tabular transformation parameters) 27
wesprm (Coordinate transformation parameters) 31
wtbarr (Extraction of coordinate lookup tables from BINTABLE) 43

4 File Index

4.1 File List

Here is a list of all files with brief descriptions:
cel.h 44
fitshdr.h 49
getwcestab.h 53
lin.h 55
log.h 61
prj.h 62
spc.h 85
sph.h 94
spx.h 98
tab.h 106
wces.h 112
wesfix.h 125
weshdr.h 131
wecslib.h 151
wesmath.h 152
wesprintf.h 153
westrig.h 154
wcsunits.h 157
wesutil.h 165

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5 Data Structure Documentation 6

5 Data Structure Documentation

5.1 celprm Struct Reference

Celestial transformation parameters.

#include <cel.h>

Data Fields

* int flag

* int offset

¢ double phiO

* double thetaO

¢ double ref [4]

e struct prjprm prj
¢ double euler [5]
* int latpreq

* int isolat

5.1.1 Detailed Description

The celprm struct contains information required to transform celestial coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes and others are for internal use only.

Returned celprm struct members must not be modified by the user.

5.1.2 Field Documentation

5.1.2.1 int celprm::flag
(Given and returned) This flag must be set to zero whenever any of the following celprm struct members
are set or changed:

* celprm::offset,

e celprm::phi0,

e celprm::theta0,

o celprm::ref[4],

* celprm::prj:

prjprm::code,

prjprm::r0,
prjprm::pv(],
prjprm::phio0,

prjprm::theta0.

This signals the initialization routine, celset(), to recompute the returned members of the celprm struct.
celset() will reset flag to indicate that this has been done.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.1 celprm Struct Reference 7

5.1.2.2 int celprm::offset

(Given) If true (non-zero), an offset will be applied to (x,y) to force (z,y) = (0,0) at the fiducial point,
(¢0,00). Default is O (false).

5.1.2.3 double celprm::phi0
(Given) The native longitude, ¢ [deg], and ...

5.1.2.4 double celprm::theta0

(Given) ... the native latitude, 0y [deg], of the fiducial point, i.e. the point whose celestial coordinates are
given in celprm::ref[1:2]. If undefined (set to a magic value by prjini()) the initialization routine, celset(),
will set this to a projection-specific default.

5.1.2.5 double celprm::ref

(Given) The first pair of values should be set to the celestial longitude and latitude of the fiducial point
[deg] - typically right ascension and declination. These are given by the CRVAL1 a keywords in FITS.

(Given and returned) The second pair of values are the native longitude, ¢, [deg], and latitude, 0, [deg], of
the celestial pole (the latter is the same as the celestial latitude of the native pole, d;,) and these are given by
the FITS keywords LONPOLEa and LATPOLEa (or by PVi_2a and PVi_3a attached to the longitude
axis which take precedence if defined).

LONPOLE=a defaults to ¢y (see above) if the celestial latitude of the fiducial point of the projection is
greater than or equal to the native latitude, otherwise ¢g + 180 [deg]. (This is the condition for the celestial
latitude to increase in the same direction as the native latitude at the fiducial point.) ref[2] may be set to
UNDEFINED (from wcsmath.h) or 999.0 to indicate that the correct default should be substituted.

0,, the native latitude of the celestial pole (or equally the celestial latitude of the native pole, ¢;,) is often
determined uniquely by CRVAL1ia and LONPOLE=z in which case LATPOLEa is ignored. However, in
some circumstances there are two valid solutions for 6, and LATPOLEa is used to choose between them.
LATPOLE-= is set in ref[3] and the solution closest to this value is used to reset ref[3]. It is therefore
legitimate, for example, to set ref[3] to +90.0 to choose the more northerly solution - the default if the
LATPOLEa keyword is omitted from the FITS header. For the special case where the fiducial point of
the projection is at native latitude zero, its celestial latitude is zero, and LONPOLEa = £ 90.0 then the
celestial latitude of the native pole is not determined by the first three reference values and LATPOLEa
specifies it completely.

The returned value, celprm::latpreq, specifies how LATPOLEa was actually used.

5.1.2.6 struct prjprm celprm::prj [read]

(Given and returned) Projection parameters described in the prologue to prj.h.

5.1.2.7 double celprm::euler

(Returned) Euler angles and associated intermediaries derived from the coordinate reference values. The
first three values are the Z-, X-, and Z'-Euler angles [deg], and the remaining two are the cosine and sine
of the X-Euler angle.

5.1.2.8 int celprm::latpreq

(Returned) For informational purposes, this indicates how the LATPOLEa keyword was used

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.2 fitskey Struct Reference 8

* 0: Not required, 6, (== d,) was determined uniquely by the CRVAL1ia and LONPOLEa keywords.
* 1: Required to select between two valid solutions of §,,.

* 2: 6, was specified solely by LATPOLEa.

5.1.2.9 int celprm::isolat

(Returned) True if the spherical rotation preserves the magnitude of the latitude, which occurs iff the
axes of the native and celestial coordinates are coincident. It signals an opportunity to cache intermediate
calculations common to all elements in a vector computation.

5.2 fitskey Struct Reference

Keyword/value information.

#include <fitshdr.h>

Data Fields

* int keyno
* int keyid
* int status
e char keyword [12]
* int type
* int padding
* union {
int i
int64 k
int 1 [8]
double f
double c [2]
char s [72]
} keyvalue

e int ulen
¢ char comment [84]

5.2.1 Detailed Description

fitshdr() returns an array of fitskey structs, each of which contains the result of parsing one FITS header
keyrecord. All members of the fitskey struct are returned by fitshdr(), none are given by the user.

5.2.2 Field Documentation

5.2.2.1 int fitskey::keyno

(Returned) Keyrecord number (1-relative) in the array passed as input to fitshdr(). This will be negated if
the keyword matched any specified in the keyids[] index.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.2 fitskey Struct Reference 9

5.2.2.2 int fitskey::keyid

(Returned) Index into the first entry in keyids[] with which the keyrecord matches, else -1.

5.2.2.3 int fitskey::status

(Returned) Status flag bit-vector for the header keyrecord employing the following bit masks defined as
Preprocessor macros:

* FITSHDR_KEYWORD: Illegal keyword syntax.
e FITSHDR_KEYVALUE: Illegal keyvalue syntax.

FITSHDR_COMMENT: Illegal keycomment syntax.
e FITSHDR_KEYREC: Illegal keyrecord, e.g. an END keyrecord with trailing text.

FITSHDR_TRAILER: Keyrecord following a valid END keyrecord.

The header keyrecord is syntactically correct if no bits are set.

5.2.2.4 char fitskey::keyword

(Returned) Keyword name, null-filled for keywords of less than eight characters (trailing blanks replaced
by nulls).

Use

sprintf (dst, "%.8s", keyword)

to copy it to a character array with null-termination, or

sprintf (dst, "%$8.8s", keyword)

to blank-fill to eight characters followed by null-termination.

5.2.2.5 int fitskey::type
(Returned) Keyvalue data type:

* 0: No keyvalue.
* 1: Logical, represented as int.
e 2: 32-bit signed integer.
* 3: 64-bit signed integer (see below).
4: Very long integer (see below).
* 5: Floating point (stored as double).
6: Integer complex (stored as double[2]).
* 7: Floating point complex (stored as double[2]).

e 8: String.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.2 fitskey Struct Reference 10

* 8+10xn: Continued string (described below and in fitshdr() note 2).

A negative type indicates that a syntax error was encountered when attempting to parse a keyvalue of the
particular type.

Comments on particular data types:

* 64-bit signed integers lie in the range

(-9223372036854775808 <= int64 < -2147483648) ||
(+2147483647 < 1inte6d4 <= +9223372036854775807)

A native 64-bit data type may be defined via preprocessor macro WCSLIB_INT64 defined in wc-
sconfig.h, e.g. as ’long long int’; this will be typedef’d to ’int64” here. If WCSLIB_INT64 is not set,
then int64 is typedef’d to int[3] instead and fitskey::keyvalue is to be computed as

((keyvalue.k[2]) % 1000000000 +
keyvalue.k[1]) % 1000000000 +
keyvalue.k[0]

and may reported via

if (keyvalue.k[2]) {
printf ("%$d%09d%09d", keyvalue.k[2], abs(keyvalue.k[1l]),
abs (keyvalue.k[0]));
} else {
printf ("$d%09d", keyvalue.k[1l], abs(keyvalue.k[0]));
}

where keyvalue.k[0] and keyvalue.k[1] range from -999999999 to +999999999.

* Very long integers, up to 70 decimal digits in length, are encoded in keyvalue.l as an array of int[8],
each of which stores 9 decimal digits. fitskey::keyvalue is to be computed as

(((((((keyvalue.1l[7]) = 1000000000 +
keyvalue.1l[6]) % 1000000000 +
keyvalue.1l[5]) % 1000000000 +
keyvalue.1l[4]) » 1000000000 +
keyvalue.1[3]) % 1000000000 +
keyvalue.l[2]) % 1000000000 +
keyvalue.1l[1]) * 1000000000 +
keyvalue.1l[0]

 Continued strings are not reconstructed, they remain split over successive fitskey structs in the keys[]
array returned by fitshdr(). fitskey::keyvalue data type, 8 + 10n, indicates the segment number, n, in
the continuation.

5.2.2.6 int fitskey::padding

(An unused variable inserted for alignment purposes only.)

5.2.2.7 int fitskey::i

(Returned) Logical (fitskey::type == 1) and 32-bit signed integer (fitskey::type == 2) data types in the
fitskey::keyvalue union.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.2 fitskey Struct Reference 11

5.2.2.8 int64 fitskey::k
(Returned) 64-bit signed integer (fitskey::type == 3) data type in the fitskey::keyvalue union.

5.2.2.9 int fitskey::l
(Returned) Very long integer (fitskey::type == 4) data type in the fitskey::keyvalue union.

5.2.2.10 double fitskey::f
(Returned) Floating point (fitskey::type == 5) data type in the fitskey::keyvalue union.

5.2.2.11 double fitskey::c

(Returned) Integer and floating point complex (fitskey::type == 6 || 7) data types in the fitskey::keyvalue
union.

5.2.2.12 char fitskey::s

(Returned) Null-terminated string (fitskey::type == 8) data type in the fitskey::keyvalue union.

5.2.2.13 union fitskey::keyvalue

(Returned) A union comprised of

* fitskey::i,
* fitskey::k,
* fitskey::l,
* fitskey::f,
* fitskey::c,

* fitskey::s,

used by the fitskey struct to contain the value associated with a keyword.

5.2.2.14 int fitskey::ulen

(Returned) Where a keycomment contains a units string in the standard form, e.g. [m/s], the ulen member
indicates its length, inclusive of square brackets. Otherwise ulen is zero.

5.2.2.15 char fitskey::comment

(Returned) Keycomment, i.e. comment associated with the keyword or, for keyrecords rejected because of
syntax errors, the compete keyrecord itself with null-termination.

Comments are null-terminated with trailing spaces removed. Leading spaces are also removed from key-
comments (i.e. those immediately following the ’/* character), but not from COMMENT or HISTORY
keyrecords or keyrecords without a value indicator ("= " in columns 9-80).

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.3 fitskeyid Struct Reference 12

5.3 fitskeyid Struct Reference

Keyword indexing.

#include <fitshdr.h>

Data Fields

e char name [12]
* int count
e int idx [2]

5.3.1 Detailed Description

fitshdr() uses the fitskeyid struct to return indexing information for specified keywords. The struct contains
three members, the first of which, fitskeyid::name, must be set by the user with the remainder returned by
fitshdr().

5.3.2 Field Documentation

5.3.2.1 char fitskeyid::name

>

(Given) Name of the required keyword. This is to be set by the user; the ’.
wildcarding. Trailing blanks will be replaced with nulls.

character may be used for

5.3.2.2 int fitskeyid::count

(Returned) The number of matches found for the keyword.

5.3.2.3 int fitskeyid::idx

(Returned) Indices into keys[], the array of fitskey structs returned by fitshdr(). Note that these are O-relative
array indices, not keyrecord numbers.

If the keyword is found in the header the first index will be set to the array index of its first occurrence,
otherwise it will be set to -1.

If multiples of the keyword are found, the second index will be set to the array index of its last occurrence,
otherwise it will be set to -1.

5.4 linprm Struct Reference

Linear transformation parameters.

#include <lin.h>

Data Fields

* int flag

* int naxis

* double * crpix
* double * pc

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.4 linprm Struct Reference 13

¢ double * cdelt

* double * piximg
* double * imgpix
* int unity

e inti_naxis

e int m_flag

e int m_naxis

¢ double * m_crpix
* double * m_pc

¢ double * m_cdelt

5.4.1 Detailed Description

The linprm struct contains all of the information required to perform a linear transformation. It consists
of certain members that must be set by the user (given) and others that are set by the WCSLIB routines
(returned).

5.4.2 Field Documentation

5.4.2.1 intlinprm::flag

(Given and returned) This flag must be set to zero whenever any of the following members of the linprm
struct are set or modified:

* linprm::naxis (g.v., not normally set by the user),
e linprm::pc,

* linprm::cdelt.

This signals the initialization routine, linset(), to recompute the returned members of the linprm struct.
linset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when linini() is called for the first time for a particular linprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.4.2.2 int linprm::naxis
(Given or returned) Number of pixel and world coordinate elements.

If linini() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from
the value passed to it as a function argument. The user should not subsequently modify it.

5.4.2.3 double * linprm::crpix

(Given) Pointer to the first element of an array of double containing the coordinate reference pixel, CR-
PIXja.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.4 linprm Struct Reference

14

5.4.2.4 double * linprm::pc

(Given) Pointer to the first element of the PCi_7ja (pixel coordinate) transformation matrix. The expected

order is

struct linprm lin;
lin.pc = {PCl1_1, PCl_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via

double m[2][2] = {{PCl_1, PCl_2},
{PC2_1, PC2_2}};

which is equivalent to

double m[2][2];

m[0][0] = PC1_1;
m[0] [1] = PCl_2;
m[(1][0] = PC2_1;
m[1l][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence

lin.pc = xm;

would be legitimate.

5.4.2.5 double * linprm::cdelt

(Given) Pointer to the first element of an array of double containing the coordinate increments, CDELT1 a.

5.4.2.6 double * linprm::piximg

(Returned) Pointer to the first element of the matrix containing the product of the CDELTia diagonal

matrix and the PC1i_ja matrix.

5.4.2.7 double * linprm::imgpix

(Returned) Pointer to the first element of the inverse of the linprm::piximg matrix.

5.4.2.8 int linprm::unity

(Returned) True if the linear transformation matrix is unity.

5.4.2.9 intlinprm::i_naxis

(For internal use only.)

5.4.2.10 int linprm::m_flag

(For internal use only.)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.5 prjprm Struct Reference

15

5.4.2.11 int linprm::m_naxis

(For internal use only.)

5.4.2.12 double * linprm::m_crpix

(For internal use only.)

5.4.2.13 double * linprm::m_pc

(For internal use only.)

5.4.2.14 double * linprm::m_cdelt

(For internal use only.)

5.5 prjprm Struct Reference

Projection parameters.

#include <prj.h>

Data Fields

* int flag

e char code [4]

* double r0

* double pv [PVN]
* double phiO

* double theta0

* int bounds

¢ char name [40]

* int category

* int pvrange

* int simplezen

* int equiareal

* int conformal

* int global

* int divergent

¢ double x0

¢ double y0

e double w [10]

e intm

e intn

* int(* prjx2s)(PRIX2S_ARGS)
* int(x prjs2x)(PRIS2X_ARGS)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.5 prjprm Struct Reference 16

5.5.1 Detailed Description

The prjprm struct contains all information needed to project or deproject native spherical coordinates. It
consists of certain members that must be set by the user (given) and others that are set by the WCSLIB
routines (returned). Some of the latter are supplied for informational purposes while others are for internal
use only.

5.5.2 Field Documentation

5.5.2.1 int prjprm::flag
(Given and returned) This flag must be set to zero whenever any of the following prjprm struct members
are set or changed:

* prjprm::code,

* prjprm::1r0,

* prjprm::pv(],

e prjprm::phi0,

* prjprm::theta0.
This signals the initialization routine (prjset() or ???set()) to recompute the returned members of the pr-
jprm struct. flag will then be reset to indicate that this has been done.

Note that flag need not be reset when prjprm::bounds is changed.

5.5.2.2 char prjprm::code
(Given) Three-letter projection code defined by the FITS standard.

5.5.2.3 double prjprm::r0

(Given) The radius of the generating sphere for the projection, a linear scaling parameter. If this is zero, it
will be reset to its default value of 180° /7 (the value for FITS WCS).

5.5.2.4 double prjprm::pv

(Given) Projection parameters. These correspond to the PVi_ma keywords in FITS, so pv[0] is PVi_0a,
pv[1]is PVi_1la, etc., where i denotes the latitude-like axis. Many projections use pv[1] (PVi_1la), some
also use pv[2] (PVi_2a) and SZP uses pv[3] (PVi_3a). ZPN is currently the only projection that uses
any of the others.

Usage of the pv[] array as it applies to each projection is described in the prologue to each trio of projection
routines in prj.c.

5.5.2.5 double prjprm::phi0
(Given) The native longitude, ¢¢ [deg], and ...

5.5.2.6 double prjprm::theta0

(Given) ... the native latitude, 6y [deg], of the reference point, i.e. the point (z, y) = (0,0). If undefined (set
to a magic value by prjini()) the initialization routine will set this to a projection-specific default.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.5 prjprm Struct Reference 17

5.5.2.7 int prjprm::bounds

(Given) Controls strict bounds checking for the AZP, SZP, TAN, SIN, ZPN, and COP projections; set to
zero to disable checking.

The remaining members of the prjprm struct are maintained by the setup routines and must not be modified
elsewhere:

5.5.2.8 char prjprm::name
(Returned) Long name of the projection.

Provided for information only, not used by the projection routines.

5.5.2.9 int prjprm::category

(Returned) Projection category matching the value of the relevant global variable:

e ZENITHAL,

* CYLINDRICAL,

« PSEUDOCYLINDRICAL,
* CONVENTIONAL,

* CONIC,

* POLYCONIC,

* QUADCUBE, and

« HEALPIX.

The category name may be identified via the prj_categories character array, e.g.

struct prijprm prj;

printf ("$s\n", prj_categories[prj.category]);

Provided for information only, not used by the projection routines.

5.5.2.10 int prjprm::pvrange

(Returned) Range of projection parameter indices: 100 times the first allowed index plus the number of
parameters, e.g. TAN is 0 (no parameters), SZP is 103 (1 to 3), and ZPN is 30 (0 to 29).

Provided for information only, not used by the projection routines.

5.5.2.11 int prjprm::simplezen
(Returned) True if the projection is a radially-symmetric zenithal projection.

Provided for information only, not used by the projection routines.

5.5.2.12 int prjprm::equiareal
(Returned) True if the projection is equal area.

Provided for information only, not used by the projection routines.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.6 pscard Struct Reference 18

5.5.2.13 int prjprm::conformal
(Returned) True if the projection is conformal.

Provided for information only, not used by the projection routines.

5.5.2.14 int prjprm::global
(Returned) True if the projection can represent the whole sphere in a finite, non-overlapped mapping.

Provided for information only, not used by the projection routines.

5.5.2.15 int prjprm::divergent
(Returned) True if the projection diverges in latitude.

Provided for information only, not used by the projection routines.

5.5.2.16 double prjprm::x0

(Returned) The offset in x,and ...

5.5.2.17 double prjprm::y0
(Returned) ... the offset in y used to force (x, y) = (0,0) at (¢,00).

5.5.2.18 double prjprm::w

(Returned) Intermediate floating-point values derived from the projection parameters, cached here to save
recomputation.

Usage of the w[] array as it applies to each projection is described in the prologue to each trio of projection
routines in prj.c.

5.5.2.19 int prjprm::m

5.5.2.20 int prjprm::n

(Returned) Intermediate integer value (used only for the ZPN and HPX projections).

5.5.2.21 prjprm::prjx2s

(Returned) Pointer to the projection ...

5.5.2.22 prjprm::prjs2x
(Returned) ... and deprojection routines.

5.6 pscard Struct Reference

Store for PSi_ma keyrecords.

#include <wcs.h>

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.7 pvcard Struct Reference 19

Data Fields

e inti
e int m
e char value [72]

5.6.1 Detailed Description

The pscard struct is used to pass the parsed contents of PSi_ma keyrecords to wesset() via the wesprm
struct.

All members of this struct are to be set by the user.
5.6.2 Field Documentation
5.6.2.1 int pscard::i

(Given) Axis number (1-relative), as in the FITS PSi_ma keyword.

5.6.2.2 int pscard::m

(Given) Parameter number (non-negative), as in the FITS PSi_ma keyword.

5.6.2.3 char pscard::value

(Given) Parameter value.

5.7 pvcard Struct Reference
Store for PVi_ma keyrecords.

#include <wcs.h>

Data Fields
e inti
e intm
¢ double value

5.7.1 Detailed Description

The pvcard struct is used to pass the parsed contents of PVi_ma keyrecords to wcsset() via the wesprm
struct.

All members of this struct are to be set by the user.
5.7.2 Field Documentation

5.7.2.1 int pvcard::i
(Given) Axis number (1-relative), as in the FITS PVi_ma keyword.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.8

spcprm Struct Reference

20

5.7.2.2

(Given) Parameter number (non-negative), as in the FITS PVi_ma keyword.

int pvcard::m

5.7.2.3 double pvcard::value

(Given) Parameter value.

5.8

spcprm Struct Reference

Spectral transformation parameters.

#include <spc.h>

Data Fields

int flag

char type [8]

char code [4]

double crval

double restfrq

double restwav

double pv [7]

double w [6]

int isGrism

int padding

int(x spxX2P)(SPX_ARGS)
int(x spxP2S)(SPX_ARGS)
int(x spxS2P)(SPX_ARGS)
int(x spxP2X)(SPX_ARGS)

5.8.1 Detailed Description

The speprm struct contains information required to transform spectral coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).

Some of the latter are supplied for informational purposes while others are for internal use only.

5.8.2 Field Documentation

5.8.2.

1 int spcprm::flag

(Given and returned) This flag must be set to zero whenever any of the following speprm structure members
are set or changed:

spcprm::
spcprm::
spcprm:
spcprm::

spcprm::

type,

code,

:crval,

restfrq,

restwav,

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.8 spcprm Struct Reference 21

e spcprm::pv[].

This signals the initialization routine, spcset(), to recompute the returned members of the spcprm struct.
speset() will reset flag to indicate that this has been done.

5.8.2.2 char spcprm::type

(Given) Four-letter spectral variable type, e.g "ZOPT" for CTYPEia = *ZOPT-F2W’. (Declared as
char[8] for alignment reasons.)

5.8.2.3 char spcprm::code
(Given) Three-letter spectral algorithm code, e.g "F2W" for CTYPEia = "ZOPT-F2W’.

5.8.2.4 double spcprm::crval
(Given) Reference value (CRVAL1ia), SI units.

5.8.2.5 double spcprm::restfrq
(Given) The rest frequency [Hz], and ...

5.8.2.6 double spcprm::restwav

(Given) ... the rest wavelength in vacuo [m], only one of which need be given, the other should be set to
zero. Neither are required if the X and S spectral variables are both wave-characteristic, or both velocity-
characteristic, types.

5.8.2.7 double spcprm::pv
(Given) Grism parameters for ’"GRI” and ’GRA’ algorithm codes:

¢ 0: G, grating ruling density.

¢ 1: m, interference order.

* 2: o, angle of incidence [deg].

* 3: n,, refractive index at the reference wavelength, \,..
: nl, dn/d\ at the reference wavelength, A, (/m).

: €, grating tilt angle [deg].

.
@2} W A

: 0, detector tilt angle [deg].

The remaining members of the speprm struct are maintained by spcset() and must not be modified else-
where:

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.9 spxprm Struct Reference 22

5.8.2.8 double spcprm::w

(Returned) Intermediate values:

* 0: Rest frequency or wavelength (SI).
* 1: The value of the X -type spectral variable at the reference point (SI units).

e 2:dX/dS at the reference point (SI units).

The remainder are grism intermediates.

5.8.2.9 int spcprm::isGrism

(Returned) Grism coordinates?

¢ 0: no,
e 1:in vacuum,

e 2:in air.

5.8.2.10 int spcprm::padding

(An unused variable inserted for alignment purposes only.)

5.8.2.11 spcprm::spxX2P
(Returned) The first and ...

5.8.2.12 spcprm::spxP2S

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain
X ~» P — S in the pixel-to-spectral direction where the non-linear transformation is from X to P. The
argument list, SPX_ARGS, is defined in spx.h.

5.8.2.13 spcprm::spxS2P
(Returned) The first and ...

5.8.2.14 spcprm::spxP2X

(Returned) ... the second of the pointers to the transformation functions in the two-step algorithm chain
S — P ~ X in the spectral-to-pixel direction where the non-linear transformation is from P to X. The
argument list, SPX_ARGS, is defined in spx.h.

5.9 spxprm Struct Reference

Spectral variables and their derivatives.

#include <spx.h>

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.9

spxprm Struct Reference

23

Data Fields

5.9.1

double restfrq
double restwav
int wavetype

int velotype
double freq
double afrq
double ener
double wavn
double vrad
double wave
double vopt
double zopt
double awav
double velo
double beta
double dfreqafrq
double dafrqfreq
double dfreqener
double denerfreq
double dfreqwavn
double dwavnfreq
double dfreqvrad
double dvradfreq
double dfreqwave
double dwavefreq
double dfreqawav
double dawavfreq
double dfreqvelo
double dvelofreq
double dwavevopt
double dvoptwave
double dwavezopt
double dzoptwave
double dwaveawav
double dawavwave
double dwavevelo
double dvelowave
double dawavvelo
double dveloawav
double dvelobeta
double dbetavelo

Detailed Description

The spxprm struct contains the value of all spectral variables and their derivatives. It is used solely by

specx() which constructs it from information provided via its function arguments.

This struct should be considered read-only, no members need ever be set nor should ever be modified by
the user.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.9 spxprm Struct Reference 24

5.9.2 Field Documentation

5.9.2.1 double spxprm::restfrq
(Returned) Rest frequency [Hz].

5.9.2.2 double spxprm::restwav

(Returned) Rest wavelength [m].

5.9.2.3 int spxprm::wavetype

(Returned) True if wave types have been computed, and ...

5.9.2.4 int spxprm::velotype
(Returned) ... true if velocity types have been computed; types are defined below.

If one or other of spxprm::restfrq and spxprm::restwav is given (non-zero) then all spectral variables may
be computed. If both are given, restfrq is used. If restfrq and restwav are both zero, only wave characteristic
xor velocity type spectral variables may be computed depending on the variable given. These flags indicate
what is available.

5.9.2.5 double spxprm::freq
(Returned) Frequency [Hz] (wavetype).

5.9.2.6 double spxprm::afrq
(Returned) Angular frequency [rad/s] (wavetype).

5.9.2.7 double spxprm::ener
(Returned) Photon energy [J] (wavetype).

5.9.2.8 double spxprm::wavn

(Returned) Wave number [/m] (wavetype).

5.9.2.9 double spxprm::vrad
(Returned) Radio velocity [m/s] (velotype).

5.9.2.10 double spxprm::wave

(Returned) Vacuum wavelength [m] (wavetype).

5.9.2.11 double spxprm::vopt
(Returned) Optical velocity [m/s] (velotype).

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.9 spxprm Struct Reference 25

5.9.2.12 double spxprm::zopt
(Returned) Redshift [dimensionless] (velotype).

5.9.2.13 double spxprm::awav

(Returned) Air wavelength [m] (wavetype).

5.9.2.14 double spxprm::velo
(Returned) Relativistic velocity [m/s] (velotype).

5.9.2.15 double spxprm::beta

(Returned) Relativistic beta [dimensionless] (velotype).

5.9.2.16 double spxprm::dfreqafrq

(Returned) Derivative of frequency with respect to angular frequency [/rad] (constant, = 1/27), and ...

5.9.2.17 double spxprm::dafrqfreq

(Returned) ... vice versa [rad] (constant, = 2, always available).

5.9.2.18 double spxprm::dfreqener

(Returned) Derivative of frequency with respect to photon energy [/J/s] (constant, = 1/h), and ...

5.9.2.19 double spxprm::denerfreq

(Returned) ... vice versa [Js] (constant, = h, Planck’s constant, always available).

5.9.2.20 double spxprm::dfreqwavn

(Returned) Derivative of frequency with respect to wave number [m/s] (constant, = c, the speed of light in
vacuuo), and ...

5.9.2.21 double spxprm::dwavnfreq

(Returned) ... vice versa [s/m] (constant, = 1/c¢, always available).

5.9.2.22 double spxprm::dfreqvrad

(Returned) Derivative of frequency with respect to radio velocity [/m], and ...

5.9.2.23 double spxprm::dvradfreq

(Returned) ... vice versa [m] (wavetype && velotype).

5.9.2.24 double spxprm::dfreqwave

(Returned) Derivative of frequency with respect to vacuum wavelength [/m/s], and ...

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.9 spxprm Struct Reference

26

5.9.2.25 double spxprm::dwavefreq

(Returned) ... vice versa [m s] (wavetype).

5.9.2.26 double spxprm::dfreqawav

(Returned) Derivative of frequency with respect to air wavelength, [/m/s], and ...

5.9.2.27 double spxprm::dawavfreq

(Returned) ... vice versa [m s] (wavetype).

5.9.2.28 double spxprm::dfreqvelo

(Returned) Derivative of frequency with respect to relativistic velocity [/m], and ...

5.9.2.29 double spxprm::dvelofreq
(Returned) ... vice versa [m] (wavetype && velotype).

5.9.2.30 double spxprm::dwavevopt

(Returned) Derivative of vacuum wavelength with respect to optical velocity [s], and ...

5.9.2.31 double spxprm::dvoptwave

(Returned) ... vice versa [/s] (wavetype && velotype).

5.9.2.32 double spxprm::dwavezopt

(Returned) Derivative of vacuum wavelength with respect to redshift [m], and ...

5.9.2.33 double spxprm::dzoptwave

(Returned) ... vice versa [/m] (wavetype && velotype).

5.9.2.34 double spxprm::dwaveawav

(Returned) Derivative of vacuum wavelength with respect to air wavelength [dimensionless], and ...

5.9.2.35 double spxprm::dawavwave

(Returned) ... vice versa [dimensionless] (wavetype).

5.9.2.36 double spxprm::dwavevelo

(Returned) Derivative of vacuum wavelength with respect to relativistic velocity [s], and ...

5.9.2.37 double spxprm::dvelowave
(Returned) ... vice versa [/s] (wavetype && velotype).

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.10 tabprm Struct Reference 27

5.9.2.38 double spxprm::dawavvelo

(Returned) Derivative of air wavelength with respect to relativistic velocity [s], and ...

5.9.2.39 double spxprm::dveloawav

(Returned) ... vice versa [/s] (wavetype && velotype).

5.9.2.40 double spxprm::dvelobeta

(Returned) Derivative of relativistic velocity with respect to relativistic beta [m/s] (constant, = ¢, the speed
of light in vacuu0), and ...

5.9.2.41 double spxprm::dbetavelo

(Returned) ... vice versa [s/m] (constant, = 1/c¢, always available).

5.10 tabprm Struct Reference

Tabular transformation parameters.

#include <tab.h>

Data Fields

* int flag

e int M

e intx K

* int * map

¢ double * crval

¢ double ** index

¢ double * coord

e int nc

* int padding

* int * sense

e int * p0

¢ double * delta

¢ double * extrema
* int m_flag

e intm_M

e intm_N

e int set M

e int *x m_K

* int * m_map

¢ double * m_crval
¢ double ** m_index
¢ double ** m_indxs
¢ double * m_coord

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.10 tabprm Struct Reference 28

5.10.1 Detailed Description

The tabprm struct contains information required to transform tabular coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the latter are supplied for informational purposes while others are for internal use only.

5.10.2 Field Documentation

5.10.2.1 int tabprm::flag

(Given and returned) This flag must be set to zero whenever any of the following tabprm structure members
are set or changed:

* tabprm::M (q.v., not normally set by the user),
e tabprm::K (q.v., not normally set by the user),
* tabprm::map,

* tabprm::crval,

e tabprm::index,

* tabprm::coord.

This signals the initialization routine, tabset(), to recompute the returned members of the tabprm struct.
tabset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when tabini() is called for the first time for a particular tabprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.10.2.2 int tabprm::M
(Given or returned) Number of tabular coordinate axes.

If tabini() is used to initialize the linprm struct (as would normally be the case) then it will set M from the
value passed to it as a function argument. The user should not subsequently modify it.

5.10.2.3 int x tabprm::K

(Given or returned) Pointer to the first element of a vector of length tabprm::M whose elements
(K4, K, ...K) record the lengths of the axes of the coordinate array and of each indexing vector.

If tabini() is used to initialize the linprm struct (as would normally be the case) then it will set K from the
array passed to it as a function argument. The user should not subsequently modify it.

5.10.2.4 int x tabprm::map

(Given) Pointer to the first element of a vector of length tabprm::M that defines the association between
axis m in the M-dimensional coordinate array (1 < m < M) and the indices of the intermediate world
coordinate and world coordinate arrays, x[] and world[], in the argument lists for tabx2s() and tabs2x().

When x[] and world[] contain the full complement of coordinate elements in image-order, as will usually
be the case, then map[m-1] == i-1 for axis i in the N-dimensional image (1 < i < N). In terms of the FITS
keywords

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.10 tabprm Struct Reference 29

map[PVi_ 3a-1]==i-1.

However, a different association may result if x[], for example, only contains a (relevant) subset of inter-
mediate world coordinate elements. For example, if M == 1 for an image with N > 1, it is possible to fill
x[] with the relevant coordinate element with nelem set to 1. In this case map[0] = 0 regardless of the value
of i.

5.10.2.5 double * tabprm::crval

(Given) Pointer to the first element of a vector of length tabprm::M whose elements contain the index value
for the reference pixel for each of the tabular coordinate axes.

5.10.2.6 double xx tabprm::index

(Given) Pointer to the first element of a vector of length tabprm::M of pointers to vectors of lengths
(K1, Ko, ...K) of O-relative indexes (see tabprm::K).

The address of any or all of these index vectors may be set to zero, i.e.
index[m] == 0;
this is interpreted as default indexing, i.e.

index[m] [k] = k;

5.10.2.7 double * tabprm::coord

(Given) Pointer to the first element of the tabular coordinate array, treated as though it were defined as

double coord[K_M]...[K_2][K_1][M];

(see tabprm::K) i.e. with the M dimension varying fastest so that the M elements of a coordinate vector are
stored contiguously in memory.

5.10.2.8 int tabprm::nc

(Returned) Total number of coordinate vectors in the coordinate array being the product/K; Ko ... Ky (see
tabprm::K).

5.10.2.9 int tabprm::padding

(An unused variable inserted for alignment purposes only.)

5.10.2.10 int * tabprm::sense

(Returned) Pointer to the first element of a vector of length tabprm::M whose elements indicate whether
the corresponding indexing vector is monotonic increasing (+1), or decreasing (-1).

5.10.2.11 int x tabprm::p0

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the
coordinate array such that Y,,, as defined in Paper III, is equal to (pO[m] + 1) + tabprm::delta[m].

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.10 tabprm Struct Reference 30

5.10.2.12 double * tabprm::delta

(Returned) Pointer to the first element of a vector of length tabprm::M of interpolated indices into the
coordinate array such that Y, as defined in Paper III, is equal to (tabprm::pO[m] + 1) + delta[m].

5.10.2.13 double * tabprm::extrema

(Returned) Pointer to the first element of an array that records the minimum and maximum value of each
element of the coordinate vector in each row of the coordinate array, treated as though it were defined as

double extremal[K_M]...[K_2][2][M]

(see tabprm::K). The minimum is recorded in the first element of the compressed K7 dimension, then the
maximum. This array is used by the inverse table lookup function, tabs2x(), to speed up table searches.

5.10.2.14 int tabprm::m_flag

(For internal use only.)

5.10.2.15 int tabprm::m_M

(For internal use only.)

5.10.2.16 int tabprm::m_N

(For internal use only.)

5.10.2.17 int tabprm::set_M

(For internal use only.)

5.10.2.18 int tabprm::m_K

(For internal use only.)

5.10.2.19 int tabprm::m_map

(For internal use only.)

5.10.2.20 int tabprm::m_crval

(For internal use only.)

5.10.2.21 int tabprm::m_index

(For internal use only.)

5.10.2.22 int tabprm::m_indxs

(For internal use only.)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference

5.10.2.23 int tabprm::m_coord

(For internal use only.)

5.11 wcsprm Struct Reference

Coordinate transformation parameters.

#include <wcs.h>

Data Fields

* int flag

e int naxis

* double * crpix

* double * pc

* double * cdelt

¢ double * crval

e char(x cunit)[72]
e char(x ctype)[72]
* double lonpole

* double latpole

* double restfrq

* double restwav

* int npv

* int npvmax

* struct pvcard * pv
* int nps

* int npsmax

* struct pscard * ps
* double * cd

¢ double * crota

e int altlin

¢ int velref

e char alt [4]

¢ int colnum

e int * colax

¢ char(x cname)[72]
¢ double * crder

* double * csyer

e char dateavg [72]
e char dateobs [72]
* double equinox

¢ double mjdavg

* double mjdobs

* double obsgeo [3]
e char radesys [72]
e char specsys [72]
e char ssysobs [72]
* double velosys

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 32

¢ double zsource

e char ssyssrc [72]

* double velangl

¢ char wcsname [72]

e int ntab

* int nwtb

* struct tabprm * tab

e struct wtbarr * wtb

* int * padding

* int x types

* char Ingtyp [8]

* char lattyp [8]

* intIng

* int lat

* int spec

* int cubeface

e struct linprm lin

e struct celprm cel

* struct spcprm spc

e int m_flag

e int m_naxis

¢ double * m_crpix

* double * m_pc

¢ double * m_cdelt

¢ double x* m_crval

e char(* m_cunit)[72]
e char((* m_ctype)[72]
e struct pvcard * m_pv
* struct pscard * m_ps
¢ double * m_cd

¢ double * m_crota

e int * m_colax

¢ char(*x m_cname)[72]
¢ double * m_crder

¢ double * m_csyer

e struct tabprm * m_tab
e struct wtbarr * m_wtb

5.11.1 Detailed Description

The wesprm struct contains information required to transform world coordinates. It consists of certain
members that must be set by the user (given) and others that are set by the WCSLIB routines (returned).
Some of the former are not actually required for transforming coordinates. These are described as "auxil-
iary"; the struct simply provides a place to store them, though they may be used by weshdo() in constructing
a FITS header from a wesprm struct. Some of the returned values are supplied for informational purposes
and others are for internal use only as indicated.

In practice, it is expected that a WCS parser would scan the FITS header to determine the number of
coordinate axes. It would then use wcsini() to allocate memory for arrays in the wesprm struct and set
default values. Then as it reread the header and identified each WCS keyrecord it would load the value
into the relevant wesprm array element. This is essentially what wespih() does - refer to the prologue of

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 33

wceshdr.h. As the final step, wesset() is invoked, either directly or indirectly, to set the derived members
of the wesprm struct. wesset() strips off trailing blanks in all string members and null-fills the character
array.

5.11.2 Field Documentation

5.11.2.1 int wesprm::flag

(Given and returned) This flag must be set to zero whenever any of the following wesprm struct members
are set or changed:
e wcsprm::naxis (q.v., not normally set by the user),
* wesprm:icrpix,
* wcsprm::pc,
e wesprm::cdelt,
e wcesprm::crval,
* wcsprm::cunit,
* wesprm::ctype,
* wesprm::lonpole,
e wesprm::latpole,
* wesprm::restfrq,
* wcsprm::restwav,
* wcsprm::npv,
* wcsprm::pyv,
* wcsprm::nps,
* wcsprm::ps,
e wesprm::cd,
* wcsprm::crota,
e wesprm::altlin.

This signals the initialization routine, wcsset(), to recompute the returned members of the celprm struct.
celset() will reset flag to indicate that this has been done.

PLEASE NOTE: flag should be set to -1 when wcsini() is called for the first time for a particular wesprm
struct in order to initialize memory management. It must ONLY be used on the first initialization otherwise
memory leaks may result.

5.11.2.2 int wesprm::naxis
(Given or returned) Number of pixel and world coordinate elements.

If wesini() is used to initialize the linprm struct (as would normally be the case) then it will set naxis from
the value passed to it as a function argument. The user should not subsequently modify it.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 34

5.11.2.3 double x wesprm::crpix

(Given) Address of the first element of an array of double containing the coordinate reference pixel, CR-
PIXja.

5.11.2.4 double * wesprm::pc

(Given) Address of the first element of the PCi_-ja (pixel coordinate) transformation matrix. The expected
order is

struct wcsprm wcs;
wcs.pc = {PCl_1, PCl_2, PC2_1, PC2_2};

This may be constructed conveniently from a 2-D array via

double m[2][2] = {{PCl_1, PCl_2},
{PC2_1, PC2_2}};

which is equivalent to

double m[2][2];

m[0][0] = PCl_1;
m[0][1] = PCl_2;
m[1][0] = PC2_1;
m[1][1] = PC2_2;

The storage order for this 2-D array is the same as for the 1-D array, whence
WCS.pC = *xm;

would be legitimate.

5.11.2.5 double * wesprm::cdelt

(Given) Address of the first element of an array of double containing the coordinate increments,
CDELT1ia.

5.11.2.6 double * wesprm::crval

(Given) Address of the first element of an array of double containing the coordinate reference values,
CRVALia.

5.11.2.7 wcsprm::cunit

(Given) Address of the first element of an array of char[72] containing the CUNITia keyvalues which
define the units of measurement of the CRVALia, CDELT1a, and CDi_ja keywords.

As CUNIT1ia is an optional header keyword, cunit[][72] may be left blank but otherwise is expected to
contain a standard units specification as defined by WCS Paper 1. Utility function wcsutrn(), described in
wcsunits.h, is available to translate commonly used non-standard units specifications but this must be done
as a separate step before invoking wcsset().

For celestial axes, if cunit[][72] is not blank, wcsset() uses wesunits() to parse it and scale cdelt[], crval[],
and cd[][*] to degrees. It then resets cunit[][72] to "deg".

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 35

For spectral axes, if cunit[][72] is not blank, wcsset() uses wesunits() to parse it and scale cdelt[], crval[],
and cd[][*] to ST units. It then resets cunit[][72] accordingly.

wcsset() ignores cunit[][72] for other coordinate types; cunit[][72] may be used to label coordinate values.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

5.11.2.8 wcsprm::ctype

(Given) Address of the first element of an array of char[72] containing the coordinate axis types,
CTYPEia.

The ctype[][72] keyword values must be in upper case and there must be zero or one pair of matched
celestial axis types, and zero or one spectral axis. The ctype[][72] strings should be padded with blanks on
the right and null-terminated so that they are at least eight characters in length.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

5.11.2.9 double wesprm::lonpole

(Given and returned) The native longitude of the celestial pole, ¢, given by LONPOLEa [deg] or by
PVi_2a [deg] attached to the longitude axis which takes precedence if defined, and ...

5.11.2.10 double wcsprm::latpole

(Given and returned) ... the native latitude of the celestial pole, 0, given by LATPOLEa [deg] or by
PVi__3a [deg] attached to the longitude axis which takes precedence if defined.

lonpole and latpole may be left to default to values set by wcsini() (see celprm::ref), but in any case they
will be reset by wcesset() to the values actually used. Note therefore that if the wesprm struct is reused
without resetting them, whether directly or via wcsini(), they will no longer have their default values.

5.11.2.11 double wesprm::restfrq
(Given) The rest frequency [Hz], and/or ...

5.11.2.12 double wesprm::restwav

(Given) ... the rest wavelength in vacuuo [m], only one of which need be given, the other should be set to
Z€ro.

5.11.2.13 int wesprm::npv

(Given) The number of entries in the wesprm::pv[] array.

5.11.2.14 int wesprm::npvmax
(Given or returned) The length of the wesprm::pv[] array.

npvmax will be set by wesini() if it allocates memory for wesprm::pv[], otherwise it must be set by the
user. See also wesnpv().

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 36

5.11.2.15 struct pvcard x wesprm::pv [read]

(Given or returned) Address of the first element of an array of length npvmax of pvcard structs. Set by
wecsini() if it allocates memory for pv[], otherwise it must be set by the user. See also wesnpv().

As a FITS header parser encounters each PVi_ma keyword it should load it into a pvcard struct in the
array and increment npv. wcsset() interprets these as required.

Note that, if they were not given, wcsset() resets the entries for PVi_la, PVi_2a, PVi_3a, and PVi_4a
for longitude axis i to match phi_0 and theta_0 (the native longitude and latitude of the reference point),
LONPOLEz and LATPOLEa respectively.

5.11.2.16 int wcsprm::nps

(Given) The number of entries in the wesprm::ps[] array.

5.11.2.17 int wesprm::npsmax
(Given or returned) The length of the wesprm::ps[] array.

npsmax will be set by wcsini() if it allocates memory for wesprm::ps[], otherwise it must be set by the user.
See also wesnps().

5.11.2.18 struct pscard * wesprm::ps [read]

(Given or returned) Address of the first element of an array of length npsmax of pscard structs. Set by
wesini() if it allocates memory for ps[], otherwise it must be set by the user. See also wcsnps().

As a FITS header parser encounters each PSi_ma keyword it should load it into a pscard struct in the array
and increment nps. wcsset() interprets these as required (currently no PSi_ma keyvalues are recognized).

5.11.2.19 double x wesprm::cd

(Given) For historical compatibility, the wesprm struct supports two alternate specifications of the linear
transformation matrix, those associated with the CDi_ja keywords, and ...

5.11.2.20 double * wesprm::crota

(Given) ... those associated with the CROTA i a keywords. Although these may not formally co-exist with
PCi_ja, the approach taken here is simply to ignore them if given in conjunction with PCi_7ja.

5.11.2.21 int wesprm::altlin

(Given) altlin is a bit flag that denotes which of the PCi_ja, CDi_ja and CROTA1ia keywords are
present in the header:

e Bit 0: PCi_ja is present.

e Bit 1: CDi_ja is present.

Matrix elements in the IRAF convention are equivalent to the product CDi_ja = CDELTia *
PCi_ja, but the defaults differ from that of the PCi_ja matrix. If one or more CDi_ja keywords
are present then all unspecified CD1i_ja default to zero. If no CDi_ja (or CROTA1ia) keywords
are present, then the header is assumed to be in PC1i_ja form whether or not any PC1i_ja keywords

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 37

are present since this results in an interpretation of CDELTia consistent with the original FITS
specification.

While CDi_ja may not formally co-exist with PCi_7ja, it may co-exist with CDELTia and
CROTA ia which are to be ignored.

¢ Bit 2: CROTA1a is present.

In the AIPS convention, CROTA i a may only be associated with the latitude axis of a celestial axis
pair. It specifies a rotation in the image plane that is applied AFTER the CDELT1a; any other
CROTA ia keywords are ignored.

CROTA ia may not formally co-exist with PCi_7ja.
CROTA1ia and CDELTia may formally co-exist with CDi_Jja but if so are to be ignored.

CDi_ja and CROTA1a keywords, if found, are to be stored in the wesprm::cd and wesprm::crota arrays
which are dimensioned similarly to wcsprm::pc and wesprm::cdelt. FITS header parsers should use the
following procedure:

¢ Whenever a PCi_ja keyword is encountered:

altlin |= 1;

e Whenever a CDi_Jja keyword is encountered:

altlin |= 2;

* Whenever a CROTA i a keyword is encountered:
altlin |= 4;
If none of these bits are set the PCi_ja representation results, i.e. wesprm::pc and wesprm::cdelt will be
used as given.

These alternate specifications of the linear transformation matrix are translated immediately to PCi_ja by
wcsset() and are invisible to the lower-level WCSLIB routines. In particular, wcsset() resets wesprm::cdelt
to unity if CDi_7ja is present (and no PCi_7ja).

If CROTA ia are present but none is associated with the latitude axis (and no PCi_ja or CDi_ja), then
wcsset() reverts to a unity PC1i_ja matrix.

5.11.2.22 int wesprm::velref
(Given) AIPS velocity code VELRETF, refer to spcaips().

5.11.2.23 char wesprm::alt

(Given, auxiliary) Character code for alternate coordinate descriptions (i.e. the a’ in keyword names such
as CTYPEia). This is blank for the primary coordinate description, or one of the 26 upper-case letters,
A-Z.

An array of four characters is provided for alignment purposes, only the first is used.

5.11.2.24 int wesprm::colnum

(Given, auxiliary) Where the coordinate representation is associated with an image-array column in a FITS
binary table, this variable may be used to record the relevant column number.

It should be set to zero for an image header or pixel list.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 38

5.11.2.25 int * wesprm::colax

(Given, auxiliary) Address of the first element of an array of int recording the column numbers for each
axis in a pixel list.

The array elements should be set to zero for an image header or image array in a binary table.

5.11.2.26 wcsprm::cname

(Given, auxiliary) The address of the first element of an array of char[72] containing the coordinate axis
names, CNAMEi a.

These variables accomodate the longest allowed string-valued FITS keyword, being limited to 68 charac-
ters, plus the null-terminating character.

5.11.2.27 double x wesprm::crder

(Given, auxiliary) Address of the first element of an array of double recording the random error in the
coordinate value, CRDER1ia.

5.11.2.28 double * wesprm::csyer

(Given, auxiliary) Address of the first element of an array of double recording the systematic error in the
coordinate value, CSYER1ia.

5.11.2.29 char wcesprm::dateavg

(Given, auxiliary) The date of a representative mid-point of the observation in ISO format, yyyy-mm-
ddThh:mm:ss.

5.11.2.30 char wcsprm::dateobs

(Given, auxiliary) The date of the start of the observation unless otherwise explained in the comment field
of the DATE-OBS keyword, in ISO format, yyyy-mm-ddThh:mm:ss.

5.11.2.31 double wesprm::equinox

(Given, auxiliary) The equinox associated with dynamical equatorial or ecliptic coordinate systems,
EQUINOXa (or EPOCH in older headers). Not applicable to ICRS equatorial or ecliptic coordinates.

5.11.2.32 double wesprm::mjdavg

(Given, auxiliary) Modified Julian Date (MJD = JD - 2400000.5), MJD-AVG, corresponding to DATE-
AVG.

5.11.2.33 double wcsprm::mjdobs

(Given, auxiliary) Modified Julian Date (MJD = JD - 2400000.5), MJD-OBS, corresponding to DATE-
OBS.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 39

5.11.2.34 double wcsprm::obsgeo

(Given, auxiliary) Location of the observer in a standard terrestrial reference frame, OBSGEOQO-X,
OBSGEO-Y, OBSGEO-Z [m].

5.11.2.35 char wesprm::radesys
(Given, auxiliary) The equatorial or ecliptic coordinate system type, RADESYSa.

5.11.2.36 char wesprm::specsys

(Given, auxiliary) Spectral reference frame (standard of rest), SPECSYSa, and ...

5.11.2.37 char wesprm::ssysobs

(Given, auxiliary) ... the actual frame in which there is no differential variation in the spectral coordinate
across the field-of-view, SSYSOBSa.

5.11.2.38 double wesprm::velosys

(Given, auxiliary) The relative radial velocity [m/s] between the observer and the selected standard of rest
in the direction of the celestial reference coordinate, VELOSYSa.

5.11.2.39 double wesprm::zsource

(Given, auxiliary) The redshift, ZSOURCEa, of the source, and ...

5.11.2.40 char wesprm::ssyssrc

(Given, auxiliary) ... the spectral reference frame (standard of rest) in which this was measured,
SSYSSRCa.

5.11.2.41 double wesprm::velangl

(Given, auxiliary) The angle [deg] that should be used to decompose an observed velocity into radial and
transverse components.

5.11.2.42 char wcsprm::wcsname

(Given, auxiliary) The name given to the coordinate representation, WCSNAMEa. This variable acco-
modates the longest allowed string-valued FITS keyword, being limited to 68 characters, plus the null-
terminating character.

5.11.2.43 int wesprm::ntab

(Given) See wcsprm::tab.

5.11.2.44 int wesprm::nwtb

(Given) See wesprm::wtb.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 40

5.11.2.45 struct tabprm * wesprm::tab [read]

(Given) Address of the first element of an array of ntab tabprm structs for which memory has been allocated.
These are used to store tabular transformation parameters.

Although technically wesprm::ntab and tab are "given", they will normally be set by invoking wcstab(),
whether directly or indirectly.

The tabprm structs contain some members that must be supplied and others that are derived. The informa-
tion to be supplied comes primarily from arrays stored in one or more FITS binary table extensions. These
arrays, referred to here as "wcstab arrays", are themselves located by parameters stored in the FITS image
header.

5.11.2.46 struct wtbarr x wesprm::wtb [read]

(Given) Address of the first element of an array of nwtb wtbarr structs for which memory has been allocated.
These are used in extracting wcstab arrays from a FITS binary table.

Although technically wesprm::nwtb and wtb are "given", they will normally be set by invoking wcstab(),
whether directly or indirectly.

5.11.2.47 int+ wesprm::padding

5.11.2.48 int * wesprm::types

(Returned) Address of the first element of an array of int containing a four-digit type code for each axis.

* First digit (i.e. 1000s):

— 0: Non-specific coordinate type.

— 1: Stokes coordinate.

2: Celestial coordinate (including CUBEFACE).
3: Spectral coordinate.

* Second digit (i.e. 100s):

0: Linear axis.
1: Quantized axis (STOKES, CUBEFACE).
— 2: Non-linear celestial axis.

— 3: Non-linear spectral axis.

4: Logarithmic axis.
— 5: Tabular axis.

 Third digit (i.e. 10s):
— 0: Group number, e.g. lookup table number, being an index into the tabprm array (see above).
* The fourth digit is used as a qualifier depending on the axis type.
— For celestial axes:
* (: Longitude coordinate.
* 1: Latitude coordinate.

% 2: CUBEFACE number.
— For lookup tables: the axis number in a multidimensional table.

CTYPEia in "4-3" form with unrecognized algorithm code will have its type set to -1 and generate an
error.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 41

5.11.2.49 char wesprm::Ingtyp

(Returned) Four-character WCS celestial longitude and ...

5.11.2.50 char wesprm::lattyp

(Returned) ... latitude axis types. e.g. "RA", "DEC", "GLON", "GLAT", etc. extracted from 'RA-’,
'DEC-’,’GLON’, ’"GLAT"’, etc. in the first four characters of CTYPE a but with trailing dashes removed.
(Declared as char[8] for alignment reasons.)

5.11.2.51 int wesprm::Ing

(Returned) Index for the longitude coordinate, and ...

5.11.2.52 int wesprm::lat

(Returned) ... index for the latitude coordinate, and ...

5.11.2.53 int wesprm::spec

(Returned) ... index for the spectral coordinate in the imgcrd[][] and world[][] arrays in the API of wcsp2s(),
wcss2p() and wesmix().

These may also serve as indices into the pixcrd[][] array provided that the PC1i_ja matrix does not trans-
pose axes.

5.11.2.54 int wesprm::cubeface

(Returned) Index into the pixcrd[][] array for the CUBEFACE axis. This is used for quadcube projections
where the cube faces are stored on a separate axis (see wcs.h).

5.11.2.55 struct linprm wesprm::lin [read]

(Returned) Linear transformation parameters (usage is described in the prologue to lin.h).

5.11.2.56 struct celprm wesprm::cel [read]

(Returned) Celestial transformation parameters (usage is described in the prologue to cel.h).

5.11.2.57 struct spcprm wesprm::spc [read]

(Returned) Spectral transformation parameters (usage is described in the prologue to spc.h).

5.11.2.58 int wesprm::m_flag

(For internal use only.)

5.11.2.59 int wesprm::m_naxis

(For internal use only.)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.11 wcesprm Struct Reference 42

5.11.2.60 double * wesprm::m_crpix

(For internal use only.)

5.11.2.61 double *x wesprm::m_pc

(For internal use only.)

5.11.2.62 double x wesprm::m_cdelt

(For internal use only.)

5.11.2.63 double * wesprm::m_crval

(For internal use only.)

5.11.2.64 wcsprm::m_cunit

(For internal use only.)

5.11.2.65 wcsprm::m_ctype

(For internal use only.)

5.11.2.66 struct pvcard « wesprm::m_pv [read]

(For internal use only.)

5.11.2.67 struct pscard * wesprm::m_ps [read]

(For internal use only.)

5.11.2.68 double * wesprm::m_cd

(For internal use only.)

5.11.2.69 double x wesprm::m_crota

(For internal use only.)

5.11.2.70 int x wesprm::m_colax

(For internal use only.)

5.11.2.71 wcsprm::m_cname

(For internal use only.)

5.11.2.72 double * wesprm::m_crder

(For internal use only.)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

5.12 wtbarr Struct Reference

43

5.11.2.73 double * wesprm::m_csyer

(For internal use only.)

5.11.2.74 struct tabprm x wesprm::m_tab [read]

(For internal use only.)

5.11.2.75 struct wtbarr « wesprm::m_wtb [read]

(For internal use only.)

5.12 wtbarr Struct Reference

Extraction of coordinate lookup tables from BINTABLE.

#include <getwcstab.h>

Data Fields

e inti

e intm

e int kind

¢ char extnam [72]
e int extver

e int extlev

e char ttype [72]

* long row

e int ndim

e int x dimlen

¢ double *x arrayp

5.12.1 Detailed Description

Function wcstab(), which is invoked automatically by wcspih(), sets up an array of wtbarr structs to assist
in extracting coordinate lookup tables from a binary table extension (BINTABLE) and copying them into
the tabprm structs stored in wesprm. Refer to the usage notes for wespih() and westab() in weshdr.h, and

also the prologue to tab.h.

For C++ usage, because of a name space conflict with the wtbarr typedef defined in CFITSIO header
fitsio.h, the wtbarr struct is renamed to wtbarr_s by preprocessor macro substitution with scope limited

to wces.h itself.

5.12.2 Field Documentation
5.12.2.1 int wtbarr::i

(Given) Image axis number.

5.12.2.2 int wtbharr::m

(Given) wcstab array axis number for index vectors.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6 File Documentation

44

5.12.2.3 int wtbarr::kind

(Given) Character identifying the wcstab array type:

e c: coordinate array,

¢ i: index vector.

5.12.2.4 char wtbarr::extnam

(Given) EXTNAME identifying the binary table extension.

5.12.2.5 int wtbarr::extver

(Given) EXTVER identifying the binary table extension.

5.12.2.6 int wtbarr::extlev
(Given) EXTLEY identifying the binary table extension.

5.12.2.7 char wtbarr::ttype

(Given) TTYPEn identifying the column of the binary table that contains the wcstab array.

5.12.2.8 long wtbarr::row

(Given) Table row number.

5.12.2.9 int wtbarr::ndim

(Given) Expected dimensionality of the wcstab array.

5.12.2.10 int * wtbarr::dimlen

(Given) Address of the first element of an array of int of length ndim into which the wcstab array axis

lengths are to be written.

5.12.2.11 double xx wtbarr::arrayp

(Given) Pointer to an array of double which is to be allocated by the user and into which the wcstab array

is to be written.

6 File Documentation

6.1 cel.h File Reference

#include "prj.h"

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.1 cel.h File Reference 45

Data Structures

* struct celprm

Celestial transformation parameters.

Defines

* #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in int units.

* #define celini_errmsg cel_errmsg

Deprecated.

* #define celprt_errmsg cel_errmsg

Deprecated.

* #define celset_errmsg cel_errmsg

Deprecated.

* #define celx2s_errmsg cel_errmsg

Deprecated.

#define cels2x_errmsg cel_errmsg

Deprecated.

Functions

* int celini (struct celprm xcel)

Default constructor for the celprm struct.

* int celprt (const struct celprm xcel)

Print routine for the celprm struct.

* int celset (struct celprm xcel)

Setup routine for the celprm struct.

* int celx2s (struct celprm *cel, int nx, int ny, int sxy, int sll, const double x[], const double y[], double
phi[], double theta[], double Ing[], double lat[], int stat[])

Pixel-to-world celestial transformation.

* int cels2x (struct celprm x*cel, int nlng, int nlat, int sll, int sxy, const double Ing[], const double lat[],
double phi[], double theta[], double x[], double y[], int stat[])

World-to-pixel celestial transformation.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.1 cel.h File Reference 46

Variables

* const char * cel_errmsg [|

Status return messages.

6.1.1 Detailed Description

These routines implement the part of the FITS World Coordinate System (WCS) standard that deals with
celestial coordinates. They define methods to be used for computing celestial world coordinates from
intermediate world coordinates (a linear transformation of image pixel coordinates), and vice versa. They
are based on the celprm struct which contains all information needed for the computations. This struct
contains some elements that must be set by the user, and others that are maintained by these routines,
somewhat like a C++ class but with no encapsulation.

Routine celini() is provided to initialize the celprm struct with default values, and another, celprt(), to print
its contents.

A setup routine, celset(), computes intermediate values in the celprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by celset() but it need not be called explicitly -
refer to the explanation of celprm::flag.

celx2s() and cels2x() implement the WCS celestial coordinate transformations. In fact, they are high level
driver routines for the lower level spherical coordinate rotation and projection routines described in sph.h
and prj.h.

6.1.2 Define Documentation

6.1.2.1 #define CELLEN (sizeof(struct celprm)/sizeof(int))

Size of the celprm struct in inf units, used by the Fortran wrappers.

6.1.2.2 #define celini_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.3 #define celprt_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.4 #define celset_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.1 cel.h File Reference 47

6.1.2.5 #define celx2s_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.2.6 #define cels2x_errmsg cel_errmsg

Deprecated

Added for backwards compatibility, use cel_errmsg directly now instead.

6.1.3 Function Documentation

6.1.3.1 int celini (struct celprm x cel)

celini() sets all members of a celprm struct to default values. It should be used to initialize every celprm
struct.

Parameters:

— cel Celestial transformation parameters.

Returns:

Status return value:
¢ 0: Success.

e 1: Null celprm pointer passed.

6.1.3.2 int celprt (const struct celprm x cel)

celprt() prints the contents of a celprm struct. Mainly intended for diagnostic purposes.

Parameters:

« cel Celestial transformation parameters.

Returns:

Status return value:
¢ 0: Success.

* 1: Null celprm pointer passed.

6.1.3.3 int celset (struct celprm x cel)

celset() sets up a celprm struct according to information supplied within it.

Note that this routine need not be called directly; it will be invoked by celx2s() and cels2x() if celprm::flag
is anything other than a predefined magic value.

Parameters:

« cel Celestial transformation parameters.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.1 cel.h File Reference 48

Returns:

Status return value:
e 0: Success.
e 1: Null celprm pointer passed.
* 2: Invalid projection parameters.
* 3: Invalid coordinate transformation parameters.

¢ 4: Ill-conditioned coordinate transformation parameters.

6.1.3.4 int celx2s (struct celprm * cel, int nx, int ny, int sxy, intsll, const double x[], const double
y[], double phi[], double theta[], double Ing[], double latf[], int stat[])

celx2s() transforms (z, y) coordinates in the plane of projection to celestial coordinates (v, ¢).

Parameters:

« cel Celestial transformation parameters.

«— nx,ny Vector lengths.

«— sxy,sll Vector strides.

«— X,y Projected coordinates in pseudo "degrees".

— phi,theta Longitude and latitude (¢, 0) in the native coordinate system of the projection [deg].
— Ing,lat Celestial longitude and latitude («, §) of the projected point [deg].

— stat Status return value for each vector element:

* 0: Success.
* 1: Invalid value of (z, y).

Returns:

Status return value:
* 0: Success.
* 1: Null celprm pointer passed.
 2: Invalid projection parameters.

 3: Invalid coordinate transformation parameters.

L]

4: Tll-conditioned coordinate transformation parameters.

* 5: One or more of the (z,y) coordinates were invalid, as indicated by the stat vector.

6.1.3.5 int cels2x (struct celprm x cel, int nlng, int nlat, int sll, int sxy, const double Ing[], const
double lat[], double phi[], double theta[], double x[], double y[], int stat[])

cels2x() transforms celestial coordinates (v, 0) to (z, y) coordinates in the plane of projection.

Parameters:

« cel Celestial transformation parameters.
<« ning,nlat Vector lengths.
«— sll,sxy Vector strides.

«— Ing,lat Celestial longitude and latitude («, §) of the projected point [deg].

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.2 fitshdr.h File Reference

— phi,theta Longitude and latitude (¢, 0) in the native coordinate system of the projection [deg].
— X,y Projected coordinates in pseudo "degrees".
— stat Status return value for each vector element:

¢ 0: Success.
* 1: Invalid value of (a, J).

Returns:

Status return value:
¢ 0: Success.

e 1: Null celprm pointer passed.

: Invalid projection parameters.

: Invalid coordinate transformation parameters.

2
3

¢ 4: Ill-conditioned coordinate transformation parameters.
6

: One or more of the («, §) coordinates were invalid, as indicated by the stat vector.

6.1.4 Variable Documentation

6.1.4.1 const char * cel_errmsg|]

Status messages to match the status value returned from each function.

6.2 fitshdr.h File Reference

#include "wcsconfig.h"

Data Structures

* struct fitskeyid

Keyword indexing.

* struct fitskey

Keyword/value information.

Defines

e #define FITSHDR_KEYWORD 0x01
Flag bit indicating illegal keyword syntax.

¢ #define FITSHDR_KEY VALUE 0x02
Flag bit indicating illegal keyvalue syntax.

* #define FITSHDR_COMMENT 0x04

Flag bit indicating illegal keycomment syntax.

¢ #define FITSHDR_KEYREC 0x08
Flag bit indicating illegal keyrecord.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.2 fitshdr.h File Reference 50

#define FITSHDR_CARD 0x08
Deprecated.

#define FITSHDR_TRAILER 0x10
Flag bit indicating keyrecord following a valid END keyrecord.

#define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))
#define KEYLEN (sizeof(struct fitskey)/sizeof(int))

Typedefs

e typedef int int64 [3]
64-bit signed integer data type.

Functions

* int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int *nreject, struct
fitskey *xkeys)

FITS header parser routine.

Variables

e const char * fitshdr_errmsg []

Status return messages.

6.2.1 Detailed Description
fitshdr() is a generic FITS header parser provided to handle keyrecords that are ignored by the WCS header

parsers, wespih() and wesbth(). Typically the latter may be set to remove WCS keyrecords from a header
leaving fitshdr() to handle the remainder.

6.2.2 Define Documentation

6.2.2.1 #define FITSHDR_KEYWORD 0x01

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyword syntax.

6.2.2.2 #define FITSHDR_KEYVALUE 0x02

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keyvalue syntax.

6.2.2.3 #define FITSHDR_COMMENT 0x04

Bit mask for the status flag bit-vector returned by fitshdr() indicating illegal keycomment syntax.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.2 fitshdr.h File Reference 51

6.2.2.4 #define FITSHDR_KEYREC 0x08

Bit mask for the status flag bit-vector returned by fitshdr() indicating an illegal keyrecord, e.g. an END
keyrecord with trailing text.

6.2.2.5 #define FITSHDR_CARD 0x08
Deprecated

Added for backwards compatibility, use FITSHDR_KEYREC instead.

6.2.2.6 #define FITSHDR_TRAILER 0x10

Bit mask for the status flag bit-vector returned by fitshdr() indicating a keyrecord following a valid END
keyrecord.

6.2.2.7 #define KEYIDLEN (sizeof(struct fitskeyid)/sizeof(int))

6.2.2.8 #define KEYLEN (sizeof(struct fitskey)/sizeof(int))

6.2.3 Typedef Documentation

6.2.3.1 int64

64-bit signed integer data type defined via preprocessor macro WCSLIB_INT64 which may be defined in
wcsconfig.h. For example

#define WCSLIB_INT64 long long int

This is typedef’d in fitshdr.h as

#ifdef WCSLIB_INT64

typedef WCSLIB_INT64 int64;
felse

typedef int int64([3];
fendif

See fitskey::type.

6.2.4 Function Documentation

6.2.4.1 int fitshdr (const char header[], int nkeyrec, int nkeyids, struct fitskeyid keyids[], int x
nreject, struct fitskey xx keys)

fitshdr() parses a character array containing a FITS header, extracting all keywords and their values into
an array of fitskey structs.

Parameters:

«— header Character array containing the (entire) FITS header, for example, as might be obtained
conveniently via the CFITSIO routine fits_hdr2str().
Each header "keyrecord" (formerly "card image") consists of exactly 80 7-bit ASCII printing
characters in the range 0x20 to Ox7e (which excludes NUL, BS, TAB, LF, FF and CR) especially
noting that the keyrecords are NOT null-terminated.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.2 fitshdr.h File Reference 52

<« nkeyrec Number of keyrecords in header[].

«— nkeyids Number of entries in keyids[].

«— keyids While all keywords are extracted from the header, keyids[] provides a convienient way of
indexing them. The fitskeyid struct contains three members; fitskeyid::name must be set by the
user while fitskeyid::count and fitskeyid::name are returned by fitshdr(). All matched keywords
will have their fitskey::keyno member negated.

— nreject Number of header keyrecords rejected for syntax errors.

— keys Pointer to an array of nkeyrec fitskey structs containing all keywords and keyvalues extracted
from the header.

Memory for the array is allocated by fitshdr() and this must be freed by the user by invoking
free() on the array.

Returns:

Status return value:

¢ 0: Success.

e 1: Null fitskey pointer passed.

e 2: Memory allocation failed.

* 3: Fatal error returned by Flex parser.

Notes:

1. Keyword parsing is done in accordance with the syntax defined by NOST 100-2.0, noting the fol-
lowing points in particular:

()

(b)

(©

(d)

(e)

®

(@

Sect. 5.1.2.1 specifies that keywords be left-justified in columns 1-8, blank-
filled with no embedded spaces, composed only of the ASCIl characters
ABCDEFGHJKLMNOPQRSTUVWXYZ0123456789-_

fitshdr() accepts any characters in columns 1-8 but flags keywords that do not conform to
standard syntax.

Sect. 5.1.2.2 defines the "value indicator" as the characters =" occurring in columns 9 and 10.
If these are absent then the keyword has no value and columns 9-80 may contain any ASCII
text (but see note 2 for CONTINUE keyrecords). This is copied to the comment member of
the fitskey struct.

Sect. 5.1.2.3 states that a keyword may have a null (undefined) value if the value/comment
field, columns 11-80, consists entirely of spaces, possibly followed by a comment.

Sect. 5.1.1 states that trailing blanks in a string keyvalue are not significant and the parser
always removes them. A string containing nothing but blanks will be replaced with a single
blank.

Sect. 5.2.1 also states that a quote character (’) in a string value is to be represented by two
successive quote characters and the parser removes the repeated quote.

The parser recognizes free-format character (NOST 100-2.0, Sect. 5.2.1), integer (Sect. 5.2.3),
and floating-point values (Sect. 5.2.4) for all keywords.

Sect. 5.2.3 offers no comment on the size of an integer keyvalue except indirectly in limiting it
to 70 digits. The parser will translates an integer keyvalue to a 32-bit signed integer if it lies in
the range -2147483648 to +2147483647, otherwise it interprets it as a 64-bit signed integer if
possible, or else a "very long" integer (see fitskey::type).

END not followed by 77 blanks is not considered to be a legitimate end keyrecord.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.3 getwcstab.h File Reference 53

2. The parser supports a generalization of the OGIP Long String Keyvalue Convention (v1.0) whereby
strings may be continued onto successive header keyrecords. A keyrecord contains a segment of a
continued string if and only if

(a) it contains the pseudo-keyword CONTINUE,
(b) columns 9 and 10 are both blank,

(c) columns 11 to 80 contain what would be considered a valid string keyvalue, including optional
keycomment, if column 9 had contained ’=’,

(d) the previous keyrecord contained either a valid string keyvalue or a valid CONTINUE
keyrecord.
If any of these conditions is violated, the keyrecord is considered in isolation.

Syntax errors in keycomments in a continued string are treated more permissively than usual; the °/°
delimiter may be omitted provided that parsing of the string keyvalue is not compromised. However,
the FITSHDR_COMMENT status bit will be set for the keyrecord (see fitskey::status).

As for normal strings, trailing blanks in a continued string are not significant.

In the OGIP convention "the *&’ character is used as the last non-blank character of the string to
indicate that the string is (probably) continued on the following keyword". This additional syntax is
not required by fitshdr(), but if &’ does occur as the last non-blank character of a continued string
keyvalue then it will be removed, along with any trailing blanks. However, blanks that occur before
the * &’ will be preserved.

6.2.5 Variable Documentation

6.2.5.1 const char x fitshdr_errmsg]]

Error messages to match the status value returned from each function.

6.3 getwcstab.h File Reference

#include <fitsio.h>

Data Structures

e struct wtbarr

Extraction of coordinate lookup tables from BINTABLE.

Functions

* int fits_read_wecstab (fitsfile +fptr, int nwtb, wtbarr *wtb, int xstatus)
FITS 'TAB’ table reading routine.

6.3.1 Detailed Description

fits_read_wcstab(), an implementation of a FITS table reading routine for *'TAB’ coordinates, is provided
for CFITSIO programmers. It has been incorporated into CFITSIO as of v3.006 with the definitions in this
file, getwcstab.h, moved into fitsio.h.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.3 getwcstab.h File Reference 54

fits_read_wcstab() is not included in the WCSLIB object library but the source code is presented here as
it may be useful for programmers using an older version of CFITSIO than 3.006, or as a programming
template for non-CFITSIO programmers.

6.3.2 Function Documentation

6.3.2.1 int fits_read_wcstab (fitsfile « fptr, int nwtb, wtbarr x wtb, int x status)

fits_read_wcstab() extracts arrays from a binary table required in constructing *TAB’ coordinates.

Parameters:

« fptr Pointer to the file handle returned, for example, by the fits_open_file() routine in CFITSIO.

«— nwtb Number of arrays to be read from the binary table(s).

< wtb Address of the first element of an array of wtbarr typedefs. This wtbarr typedef is defined to
match the wtbarr struct defined in WCSLIB. An array of such structs returned by the WCSLIB
function wcestab() as discussed in the notes below.

— status CFITSIO status value.

Returns:

CFITSIO status value.

Notes:

In order to maintain WCSLIB and CFITSIO as independent libraries it is not permissible for any CFITSIO
library code to include WCSLIB header files, or vice versa. However, the CFITSIO function fits_read_-
westab() accepts an array of wtbarr structs defined in wcs.h within WCSLIB.

The problem therefore is to define the wtbarr struct within fitsio.h without including wes.h, especially
noting that wcs.h will often (but not always) be included together with fitsio.h in an applications program
that uses fits_read_wcstab().

The solution adopted is for WCSLIB to define "struct wtbarr" while fitsio.h defines "typedef wtbarr" as an
untagged struct with identical members. This allows both wcs.h and fitsio.h to define a wtbarr data type
without conflict by virtue of the fact that structure tags and typedef names share different name spaces in
C; Appendix A, Sect. Al11.1 (p227) of the K&R ANSI edition states that:

Identifiers fall into several name spaces that do not interfere with one another; the same identifier may
be used for different purposes, even in the same scope, if the uses are in different name spaces. These
classes are: objects, functions, typedef names, and enum constants; labels; tags of structures, unions, and
enumerations; and members of each structure or union individually.

Therefore, declarations within WCSLIB look like

struct wtbarr xw;

while within CFITSIO they are simply

wtbarr xw;

As suggested by the commonality of the names, these are really the same aggregate data type. However, in
passing a (struct wtbarr x) to fits_read_wecstab() a cast to (wtbarr) is formally required.

When using WCSLIB and CFITSIO together in C++ the situation is complicated by the fact that typedefs
and structs share the same namespace; C++ Annotated Reference Manual, Sect. 7.1.3 (p105). In that case
the wtbarr struct in wcs.h is renamed by preprocessor macro substitution to wtbarr_s to distinguish it from
the typedef defined in fitsio.h. However, the scope of this macro substitution is limited to wcs.h itself and
CFITSIO programmer code, whether in C++ or C, should always use the wtbarr typedef.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.4 lin.h File Reference

55

6.4 lin.h File Reference

Data Structures

e struct linprm

Linear transformation parameters.

Defines

e #define LINLEN (sizeof(struct linprm)/sizeof(int))

Size of the linprm struct in int units.

* #define linini_errmsg lin_errmsg

Deprecated.

* #define lincpy_errmsg lin_errmsg

Deprecated.

* #define linfree_errmsg lin_errmsg

Deprecated.

* #define linprt_errmsg lin_errmsg

Deprecated.

e #define linset_errmsg lin_errmsg

Deprecated.

* #define linp2x_errmsg lin_errmsg

Deprecated.

¢ #define linx2p_errmsg lin_errmsg

Deprecated.

Functions

* int linini (int alloc, int naxis, struct linprm *lin)

Default constructor for the linprm struct.

* int lincpy (int alloc, const struct linprm xlinsrc, struct linprm *lindst)

Copy routine for the linprm struct.

* int linfree (struct linprm x*lin)

Destructor for the linprm struct.

* int linprt (const struct linprm xlin)

Print routine for the linprm struct.

* int linset (struct linprm xlin)

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.4 lin.h File Reference 56

Setup routine for the linprm struct.

e int linp2x (struct linprm =*lin, int ncoord, int nelem, const double pixcrd[], double imgerd[])

Pixel-to-world linear transformation.

* int linx2p (struct linprm =*lin, int ncoord, int nelem, const double imgcrd]], double pixcrd[])

World-to-pixel linear transformation.

e int matinv (int n, const double mat[], double inv[])

Matrix inversion.

Variables

* const char * lin_errmsg []

Status return messages.

6.4.1 Detailed Description

These routines apply the linear transformation defined by the FITS WCS standard. They are based on
the linprm struct which contains all information needed for the computations. The struct contains some
members that must be set by the user, and others that are maintained by these routines, somewhat like a
C++ class but with no encapsulation.

Three routines, linini(), lincpy(), and linfree() are provided to manage the linprm struct, and another, lin-
prt(), prints its contents.

A setup routine, linset(), computes intermediate values in the linprm struct from parameters in it that were
supplied by the user. The struct always needs to be set up by linset() but need not be called explicitly - refer
to the explanation of linprm::flag.

linp2x() and linx2p() implement the WCS linear transformations.

An auxiliary matrix inversion routine, matinv(), is included. It uses LU-triangular factorization with scaled
partial pivoting.

6.4.2 Define Documentation

6.4.2.1 #define LINLEN (sizeof(struct linprm)/sizeof(int))
Size of the linprm struct in inf units, used by the Fortran wrappers.
6.4.2.2 #define linini_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

Generated on Mon Feb 7 18:03:56 2011 for WCSLIB 4.7 by Doxygen

6.4 lin.h File Reference 57

6.4.2.3 #define lincpy_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.4 #define linfree_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.5 #define linprt_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.6 #define linset_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instead.

6.4.2.7 #define linp2x_errmsg lin_errmsg

Deprecated

Added for backwards compatibility, use lin_errmsg directly now instea