iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mitiad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mirigd Miciag Mirigd M|r|ad giriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad M iri q y iriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad ’i:\rll & m hd Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir iria iri W ec viriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad M|M@Wﬁ1mmimﬂg mmm Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Mifi R imiad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mirigd Mirj ad M|r|ad Mitgiad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad M|r| VA el<Sp rayMiriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad erlad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad M geaagMiriad Miriad Miriad Miriad Miriad Miriad Miriad Jdsiggad Mirimd Migad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad m) Mifad Mirfiad M iff0 Miriad Miriad Miria
iriad Miriad Miriad Miriad Miria@@ Mir ad d i ir ad jad i irigd Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Mg Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Mictiad Mirjad Miriad Mirjad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad B@bhﬁﬂdt/ﬁrandeal I’IK eeniriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriadzgiﬁ pa@@@@l Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad' Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
rad miriad wiriad (Seehttpywwwwiatnficsi roaufcomputing/software/miriag i viriad i
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad I
iad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miria
iriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Mir
Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad Miriad |

ii

Contents

Table of Contents

List of Tables

1 Program Development

1.1
1.2
1.3
1.4

General Programming Conventions
In-Line Documentation L e
Code History o e

Task Version Identification e

2 MIRIAD Subroutine Library

2.1
2.2
2.3
2.4
2.5

Task Parameters e e
Error Handling e
Text T/O . o o o
General Data Set Handling
UV Data Sets oo i e
2.5.1 General
2.5.2 Open, Close and Rewind
2.5.3 Reading and Writing Visibilities 0oL
2.5.4 Reading and Writing Continuum Visibilities
2.5.5 Direct Access to UV Variables
2.5.6 Variable Override
2.5.7 UVNEXT e
2.5.8 Determining UV Variables and Their Characteristics
2.5.9 Keeping Track of UV Variables
2.5.10 When Do UV Variables Change?
2.5.11 Massaging Steps Performed by UVREAD - UVSET
2.5.12 Setting Up UVWRITE - UVSET
2.5.13 Selection Steps Performed by UVREAD — UVSELECT
2.5.14 Getting Information After UVREAD

iii

2-7

iv

2.6
2.7
2.8
2.9
2.10

2.11
2.12
2.13
2.14
2.15

Utility Programs
FLINT o oo o

3.1

3.2

UV Selection — Sellnput and SelApply
The UVDAT routines
Image Data Sets
Image Coordinate System
Region of Interest and Pixel Blanking
2.10.1 Regular Regions of Interest
2.10.2 Arbitrary Regions of Interest and Blanking Information

2.10.3 Reading and Writing Blanking Information

Scratch Files

General Item Routines

History Item

Low Level I/O Routines
Numeric Routines
2.15.1 FFT Routines
2.15.2 Min and Max Value Routines
2.15.3 WHEN and ISRCH Routines
2.15.4 Blas and Linpack Routines

3.1.1 Making Flint Quieter
3.1.2 Other Flags and Arguments
3.1.3 Bugs and Shortcomings
3.1.4 Determining the Intent of Subroutine Arguments

3.1.5 Interface Definition Libraries

3.2.2 Language Extensions
3.2.3 Optimization Directives

3.2.4 Conditional Compilation Directives

A Image Items

B UV Variables

CONTENTS

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9

Al

B.1

UV Data Subroutines L 2-4
Arguments to UVSET, for STATUS=OLD 2-7
Arguments to UVSET, for STATUS=NEW 2-9
Arguments to UVSELECT 2-9
Arguments to UVINFO 0 2-10
Arguments to SelProbe 2-11
Flag Values for the uvDatInp Call 2-12
Image Coordinate System e 2-14
Coordinate System Code Example 2-15
Item names in MZRZAD image datasets A-2
MIRIAD items in a uv visibility dataset B-2

vi

LIST OF TABLES

Chapter 1

Program Development

Programs are developed in the usual manner, making calls to the MZRZAD subroutine library. It may
be convenient to pass code through the RATTY preprocessor before compiling. RATTY preprocesses
a few language extensions into standard Fortran, and flags a few bad programming practises. When
linking, the MZRZAD object library, libmir, is used.

1.1 General Programming Conventions

MIRIAD tasks should be written in Fortran-77. Though you should program in standard FORTRAN,
two extensions will generally be needed by the programmer. Firstly MZRZAD uses both upper and
lower case character strings (Fortran-77 strictly supports only upper case characters. However almost all
compilers support both upper and lower case, and it would be a reasonably simple preprocessing job to
convert all of MIRZAD to a strictly upper case system if the need ever arises). Generally MZRZAD
routines are case-sensitive, with lower case being preferred.

Secondly MIRZIAD tasks should use the maxdim.h include file where appropriate. This include file
defines a parameter, maxdim, which gives the maximum image dimension that a task should be prepared
to accept. Currently this is set to 4096, but by using maxdim to define needed storage, it should be
reasonably easy to rebuild all MZRZAD tasks to handle larger images. The include file also defines a
parameter maxbuf, which is a guide to the maximum amount of internal data storage that a program
should contain.

Despite the encouragement to use this include file, programmers are generally discouraged from using
include files and common blocks. This is far from a strict rule. Avoid them if you can.

See Chapter 3 for a description of some utilities which simplify the development of code.

1.2 In-Line Documentation

Documentation for MZRZAD tasks and subroutines is included as comments within the body of the
code (delimited by special “directives”). This documentation is stripped out by the doc program to
produce a .doc file. This .doc file is then used by the on-line help facilities and the manual generation
utilities.

This documentation should be at the head of the source code. In FORTRAN notation, the documentation
“directives” are:

c= [routine name] [one-line description] (for programs)
c* [routine name] [one-line description] (for subroutines)
c& programmer ID

2 CHAPTER 1. PROGRAM DEVELOPMENT

c: comma-separated list of categories

c+
c start of multi-line description block
c@ keyword (for tasks)

(for tasks)
(for tasks - deprecated form)

¢ multi-line keyword description
c< standard keyword

For FORTRAN, comment lines can begin with either an uppercase or a lowercase c. In-line documentation
in C is analogous, except that comment lines begin with a /*. Note also that once a /* is entered,
everything until the next */ is considered a comment; it is the programmer’s responsibility to determine
where to place the */.

The entries in the comma-separated list of categories should be:

For executables:

General Utility Data Transfer Visual Display
Calibration uv Analysis Map Making Deconvolution
Plotting Map Manipulation Map Combination Map Analysis
Profile Analysis Model Fitting Tools Other

For subroutines:

Baselines Calibration Convolution Coordinates
Display Error-Handling Files Fits
Fourier-Transform Gridding Header-1/0 History
Image-Analysis Image-1/O Interpolation Least-Squares
Log-File Low-Level-1/O Mathematics Model
PGPLOT Plotting Polynomials Region-of-Interest
SCILIB Sorting Strings Terminal-1/0
Text-1/0 Transpose TV User-Input
User-Interaction Utilities uv-Data uv-1/0
Zeeman Other

A Program Example

By way of illustration, below is the in-code documentation for MZRZAD task varplot which uses the
“directives” noted previously.

c= varplot - Plot uv variables
c& lgm
c: uv analysis, plotting

[VARPLOT makes X,Y plots selected variables from a uv data set.
[¢ Only integer, real, and double precision variables maybe plotted.

[¢ When curser is in the plot window, the following keys are active:

[¢ X - expand window in X to give one column of plots

[¢ Y - expand window in Y to give one row of plots

[¢ Z - expand window in both X and Y to show only one plot

[¢ N - step to "next" plot in x or y or both depending on expansion

c@ vis

C Miriad uv data-set. No default.

c@ device

[¢ PGPLOT plotting device. No default.

c@ xaxis

[¢ Name of variable to be plotted along x-axis. Default is ut time.
c@ yaxis

[¢ Name of variable to be plotted along y-axis. No default.

c@ multi

1.3. CODE HISTORY 3

[¢ Make multiple plots or a single plot? Yes yields multiple plots,
[¢ No yields a single plot with multiple lines as needed. Default
[¢ is yes.

c@ compr

[¢ Compress number of x or y variables to be plotted by averaging
[¢ over spectral windows. Currently only SYSTEMP can be averaged.

c——

The task’s name is “varplot”, its one-line description is “Plot uv variables”, the responsible programmer
is “lgm”, and the program is categorized as both a “uv analysis” program and a “plotting” program. It
has a general description (the text following the c+ line), and it has 6 keywords that the user may set:

“vis”, “device”, “xaxis”, “yaxis”, “multi”, and “compr”.

A Subroutine Example

By way of illustration, below is the in-code documentation for MZRZAD subroutine axistype, which
uses the “directives” noted previously.

c* Axistype - Find the axis label and plane value in user friendly units

c& mchw
c: plotting
c+
subroutine AxisType(lIn,axis,plane,ctype,label,value,units)
c
implicit none
integer 1In,axis,plane
character ctype*9,label*13,units*13
double precision value
c
c Find the axis label and plane value in user friendly units.
c
c Inputs:
[¢ 1In The handle of the image.
[¢ axis The image axis.
[¢ plane The image plane along this axis.
c Output:
[¢ ctype The official ctype for the input axis.
C label A nice label for this axis.
[¢ value The value at the plane along this axis.
[¢ units User friendly units for this axis.

[e]
|
|

Note that the programmer has woven executable code into the documentation (the lines that are not
commented out): anything between the c+ and the c-- is considered to be part of the documentation,
even though the lines are actually part of the subroutine code itself.

A subroutine source code file (or a program source code file) may contain multiple subroutines, each
documented as above.

1.3 Code History

All source code files should contain comments (near the start of the file) describing the creation and mod-
ification history. This is quite important in the MZRZIAD development environment, where programs
are spread across many computers and programmers are separated by many miles.

Below are typical history comments (taken from the “key” routines, subroutine key.for):

€ kK 3k ok ok ok >k ok ok 3k ok ok >k ok ok 3k ok ok >k 5k ok >k 3k ok >k 5k ok >k 3k ok >k 3k ok ok 3k ok >k k >k ok 3k 3k >k >k >k ok >k 3k ok >k >k 5k >k >k >k ok >k 5k %k >k 5k %k >k %k >k >k %k >k >k k >k k

4 CHAPTER 1. PROGRAM DEVELOPMENT

The key routines provide keyword-oriented access to the command line.
History:
rjs 6jun87 Original version.
bs Toct88 Converted it to use iargc and getarg. Added -f flag.
rjs 8sep89 Improved documentation.

nebk 10sep89 Added mkeyr. I think rjs will not like it (Too right!).

rjs 190ct89 Major rewrite to handle @ files.

rjs 15nov89 Added keyf routine, and did the rework needed to support
this. Added mkeyf. Modified mkeyr.

pjt 26mar90 Added mkeya. like mkeyr (again, bobs will not like this)

pjt 10apr90 some more verbose bug calls.

rjs 23apr90 Made pjt’s last changes into standard FORTRAN (so the
Cray will accept it).

pjt 10may90 Make it remember the programname in keyini (se key.h)
for bug calls - introduced progname

rjs 220ct90 Check for buffer overflow in keyini.

pjt 21jan90 Added mkeyi, variable index is now idx, exp is expd

Cokoksk sk ok ok ok sk sk ok sk sk ok ok o sk sk sk sk ok ok ok sk sk sk sk sk ok ok sk sk sk sk ok ok sk ok sk sk sk sk ok ok ok sk sk ok sk sk sk sk ok ok ok ok o ok

O o0 00000 00000000000

1.4 Task Version Identification

The first executable statement of a program should be to print out a version identification. The following
is typical:

Ckkskstokokok sk ksl stk ok skok stk stk ki stk ok sk stk ok stk ki sk ok stk sk ok skok ki sk ok sk ok
program Clean

character version* ()
parameter (version=’Clean: version 1.0 26-jan-90’)

call output(version)

This gives a version and the date when the task CLEAN was last modified. Additionally, this version
identification should be included in any history generated by the task.

Chapter 2

MIRIAD Subroutine Library

2.1 Task Parameters

subroutine keyini

subroutine keyr (keyword,value,default)
subroutine keyd(keyword,value,default)
subroutine keyi(keyword,value,default)
subroutine keyl(keyword,value,default)
subroutine keya(keyword,value,default)
subroutine keyf (keyword,value,default)
subroutine mkeyr(keyword,values,nmax,n)
subroutine mkeyi(keyword,values,nmax,n)
subroutine mkeya(keyword,values,nmax,n)
subroutine mkeyf (keyword,values,nmax,n)
logical function keyprsnt(keyword)
subroutine keyfin

The key routines are used to get task parameters, which describe the processing that is to be performed.
Typically the key routines will be called in the first few lines of the task, and never called again. All
checking for the validity of the parameters should be carried out at this time.

Keyini initializes the key routines, and must be the first routine called. Similarly keyfin tidies up, and
closes down. Keyr, keyd, keyi, keyl and keya return the value of a task parameter from the user.
Their inputs are keyword (a character string) and default, the default value for the parameter. The
keyword must be in lower case. The task parameter is returned in value. Keyi, keyr, keyl, keyd and
keya are used for integer, real, logical, double precision and character values respectively. Only one value
is returned at a time. The keyf routine is like keya, except that the string entered by the user is treated
as a file name, and wildcard expansion is performed. The key routines can be called several times, giving
the same keyword, and each successive call will get the next value associated with the keyword.

For example, if TRC is defined by the user as:
% TRC = 45,50
then the code:

call keyi(’trc’,nl1,1)

2-1

2-2 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

call keyi(’trc’,n2,1)

will return the values 45 and 50 to n1 and n2 respectively.

These routines always return a value, even if it is only the default value. To determine if a parameter
was actually set by the use, the keyprsnt routine can be called. This returns .true. if a value for the
keyword still remains. An alternate way to test if a value is still present is to use a default which is clearly
illegal (e.g. a blank string for a file name, or 0 for a pixel index).

The mkey routine return all values entered by the user for that particular keyword where all the values
of the keyword are of the same data type. For these routines values is an array of nmax elements. The
number of values returned (which may be zero) is given by n.

2.2 Error Handling

Many MZRIAD routines perform error checking internally, and bomb out if an error is detected. Other
MIRIAD routines pass back a status value (generally the last subroutine argument). A status value of
zero indicates success, -1 indicates end-of-file, and a positive value indicates some other error (what the
positive values indicate is system dependent). Two routines can be called to indicate an error:

subroutine bug(severity,text)
subroutine bugno(severity,number)

Here severity is a single character, being either *w’, ’e’ or ’f’, meaning warning, error and fatal
respectively. When bug or bugno is called with a fatal error, it will not return. Rather it will cause the
task to exit. For routine bug, text is a character string describing the error. For routine bugno, number
is a status value, returned by a MZRZAD routine.

2.3 Text I/O

Though standard Fortran-77 routines would appear to be adequate for text i/o, there are invariably minor
differences between systems, mainly related to carriage control. Additionally placing them in a module
of routines forces the programmer to follow the ‘handle’ convention.

subroutine output (text)

subroutine txtopen(handle,name,status,iostat)
subroutine txtread(handle,text,length,iostat)
subroutine txtwrite(handle,text,length,iostat)
subroutine txtclose(handle)

Output prints text (a character string) on the users terminal.

Txtopen opens a text file (passing back a handle) with name name. Status can be either *0ld’ or ’new’.
When opening a new file, any old files which exist with the same name may be deleted. Txtread and
txtwrite read and write a character string, text, of length characters. Length is passed back from
txtread, whereas it is passed into txtwrite. It may be zero in either case. All these routines return an
i/o status variable, iostat.

Txtclose closes the file.

2.4. GENERAL DATA SET HANDLING 2-3

2.4 General Data Set Handling

MZIRIAD makes few distinctions between what some systems (e.g. GIPSY, AIPS and FITS) call “data”
and “header”. Instead a data “file” (usually called a data set in this document) consists of a collection
of items. Some items are small (a few bytes) whereas others are large (e.g. the collection of pixels in an
image). All items are accessed by their name (a lower case string of up to 8 alphanumeric characters.
Underscore and dollar characters are to be avoided). Convention dictates the names assigned to the
various items within a data set. For example, the item name “image” is always used to store the pixel
data of an image, “naxis” is the number of dimensions in an image, and “naxisl” is the number of pixels
along the first axis of an image. New sorts of data items can be invented as the need arises.

What would be conventionally call header variables, are stored as small items. The naming convention
is close to the FITS standard (though the names are lower case).

The following sections describe routines that in some way package together several calls to the lower level
i/o routines. Their first argument is a “handle” returned by one of the open routines.

2.5 UV Data Sets

2.5.1 General

At the very least, a uv data set can be viewed as a sequence of correlation records, with associated u and
v coordinates, time and baseline number. Associated with each correlation is a flag, indicating whether
the correlation is believed to be good or bad.

The MIRIAD uv data structure required a more general structure. Unfortunately this is more compli-
cated and somewhat cumbersome for simple cases. A uv data set can be viewed as an ordered (generally
time ordered) stream of named records or “variables”. There are markers in this data stream, to indicate
when several variables change “simultaneously” (i.e. they correspond to the same time). Each variable
consists of an array of values, the type of which can be either integer, real or double precision, etc. Cor-
relation data, u and v coordinates, time and baseline numbers are specific examples of variables. Because
of the special nature of these variables, special routines are available to simplify accessing them. A list
of the variables that may be present in a uv data set is given in Appendix I.

In addition to this variable stream, a uv file will contain a file giving flagging information.

It should be noted that “variables” and “items” are quite distinct. For a particular data set, variables
vary, or at least may vary, whereas data items are fixed. The notion of variables is unique to uv data sets,
whereas all MIRIAD data sets are composed of data items. The stream of uv variables is implemented
as three data items, called visdata, vartable and flags.

There is a “miriad” of uv routines. The routines used to access and manipulate a uv data set are given
in the following table.

2.5.2 Open, Close and Rewind

The routine uvopen opens a uv data set and readies it for access. Here dataname is a string giving the
data set’s name. Status can be either 01d’ or ’new’, depending whether an old data set is being read,
or a new data set is being created. Tno is an integer handle passed back by the open routine (and is used
for all future access to the data set). The routine uvclose closes the data set. The routine uvrewind
positions a uv file at its beginning, and allows it to be read again.

2.5.3 Reading and Writing Visibilities

The routines uvread and uvwrite are routines used to read and write the correlation data (and the
associated flagging information). Here preamble is an array of four double precision elements, data is an

2-4

subroutine
subroutine
subroutine
subroutine
subroutine
subroutine

subroutine
subroutine

subroutine
subroutine
subroutine
subroutine
subroutine

subroutine
subroutine
subroutine
subroutine
subroutine

subroutine

subroutine
subroutine
subroutine
subroutine
subroutine

subroutine

CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

uvopen (tno,dataname,status)
uvread(tno,preamble,data,flags,n,nread)
uvflgwr (tno,flags)
uvwrite(tno,preamble,data,flags,n)
uvclose(tno)

uvrewind(tno)

uvwread(tno,data,flags,n,nread)
uvwwrite(tno,data,flags,n)

uvgetvra(tno,varname,data)

uvgetvri (tno,varname,data,n)
uvgetvrr (tno,varname,data,n)
uvgetvrd(tno,varname,data,n)
uvgetvrc(tno,varname,data,n)

uvrdvra(tno,varname,data,default)
uvrdvri(tno,varname,data,default)
uvrdvrr (tno,varname,data,default)
uvrdvrd(tno,varname,data,default)
uvrdvrc (tno,varname,data,default)

uvprobvr (tno,varname,type,length,update)

uvputvra(tno,varname,data)

uvputvri (tno,varname,data,n)
uvputvrr (tno,varname,data,n)
uvputvrd(tno,varname,data,n)
uvputvrc(tno,varname,data,n)

uvtrack(tno,varname,switches)

integer function uvscan(tno,varname)
logical function uvupdate(tno)

subroutine
subroutine
subroutine

subroutine
subroutine
subroutine

uvmark (tno,onoff)
uvcopyvr (tin,tout)
uvnext (tno)

uvset (tno,object,type,n,pl,p2,p3)

uvselect (tno,object,pl,p2,flag)
uvinfo(tno,object,data)

Table 2.1: UV Data Subroutines

2.5. UV DATA SETS 2-5

array of n complex elements, whereas flags is an array of n logical values. Preamble, data and flags
are output from uvread, whereas they are input to uvwrite. The four elements of preamble are the
u coordinate, v coordinate (measured in nanoseconds), time (Julian date) and baseline number. The
baseline number, Bl, is calculated as:

Bl = 256A; + A

where A; and Ao are the numbers of the first and second antennae respectively (antenna numbers vary
from 1 t0 Ngntenna). The array data is used to store the complex correlation data, whereas the logical
values of the array flags indicate whether the corresponding correlation is deemed good or bad (true or
false, respectively). For uvread, n limits the number of correlations that can be read; the actual number
of correlations read is passed back as nread. Uvread can perform a number of additional processing steps
— see the description of uvset (Section 2.5.11).

The flags of a data file can be modified using the uvflgwr subroutine. When called, the flags associated
with the previous call to uvread and uvwrite are changed to those values given in the flags array. Using
uvflgwr when reading a visibility file, is the method used to develop flagging tasks. Currently uvflguwr
has the limitation that the linetype is either ‘channel’ or ‘wide’, and that the ‘start’ and ‘width’ linetype
parameters are 1 (see Section 2.5.11). Also uvflgwr aborts if no flagging file exists

2.5.4 Reading and Writing Continuum Visibilities

MIRIAD uv datasets can contain both spectral and continuumn visibility data simultaneously. When
both are present, the user/programmer will normally select which of these data to read, using the uvset
routine (see Section 2.5.11). However this allows only one “linetype” to be read and written at a time.
The uvwread and uvwwrite allow the programmer to read and write the continuum data independently
of the “linetype”. These routines completely bypass linetype processing. They should be used only when
both a particular linetype, and the continuum data are required. Uvwread should be called after the call
to uvread, whereas uvwwrite should be called before the call to uvwrite.

The routine uvwflgwr is the “wide” equivalent of uvflgwr. That is, by calling uvwflgwr, you can
overwrite the flags associated with the previous call to uvwread and uvwwrite. Note that uvwflgwr
aborts if no flagging file exists.

2.5.5 Direct Access to UV Variables

The main routines to access the variables are the uvgetvr and uvputvr routines. These read or write
(respectively) an array of variables of given name (varname). The data read or written are in the array
data (which can be a character string or an integer, real or double precision array, depending on the
routine called). Exactly n values are read or written. Except for character strings, it is a fatal error,
when reading, if n does not agree with the actual number of values for the variable). For a character
string, the string is blank padded on a read (no n parameter is needed).

When reading an old data set, the uvgetvr routines should not be called before the first call to uvread.
When creating a data set, the initial values for all variables should be written, by calls to the uvputvr
routines, before the first call to the uvwrite routine (see Section 2.5.7 for some enlightenment on this
issue).

Often it occurs that we are interested in a variable which has a single value, but we are not sure if the
variable is present in the dataset. It would be possible to handle this with uvprobvr (Section 2.5.8) and
uvgetvr. If the variable is not present, then we would want to use a default value. The uvrdvr routines
package these three steps. It returns the value of the variable, data. If the variable is missing from the
data stream, the default value, default, is returned. One disadvantage is that the uvrdvr routines only
every return a single value (the first value in a multi-element variable).

The routine uvread functions by scanning through the variable streams, and returns with its results,
when the “correlation data” (“corr” or “wcorr”) is encountered. If you are not interested in reading
the correlation data (i.e. if you do not intend calling uvread), then the uvscan routine can be used to
scan through the variable stream until another variable is encountered. Actually uvscan may well read

2-6 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

somewhat past the desired variable, until it has read all variables which changed simultaneously with the
desired one. Uvscan returns 0 is the variable was successfully found, -1 if an end of file was encountered,
or 1 if the variable was not found. Note that it may not make a great deal of sense to intermix calls to
uvscan and uvread.

2.5.6 Variable Override

Occassionally it is useful for the user to override the value of a uv variable. This is especially useful if
the value of the variable is both wrong and important! When uvio opens an old file, for each variable
name that is present in the uv file, it checks if there is a corresponding item with the same name. If there
is, then the value of the item is used to override the value of the variable. Unfortunately the item must
consist of a single number, and this single number will be copied into each value of the variable (if the
variable consists of several elements).

2.5.7 UVNEXT

The uv i/o routines need to know what variables change simultaneously. all variables that have changes
simultaneously. Conversely routine uvwrite assumes that all variables that change simultaneously with
the variables that it writes, have already been written with routine uvputvr. Hence if the programmer is
using uvscan, uvread or uvwrite, then simultaneity is not a concern, as long as variables are read after
uvscan/uvread, and written before uvwrite. The routine uvnext provides better control, where this is
needed. For an input file, a call to uvnext causes the next set of variables (which change simultaneously)
to be read. For an output file, uvnext causes a marker to be written into the data, to indicate that
variables written after the call did not change simultaneously with variables written before the call.

2.5.8 Determining UV Variables and Their Characteristics

Routine uvprobvr checks for the existence of a variable, and returns information about it. The string
varname, the variable name, is input. The single character type is output, being either ‘a’, ‘r’, ‘d’, ‘c’, ‘i’,
‘4 or ‘7 (a blank), which indicates (respectively) that the variable is of type string (ascii), real, double
precision, complex, integer, short integer or (in the case of the blank) that the variable is not present in
the data-set. The output integer length gives the number of elements in the variable, and the output
logical update indicates whether the variable has been updated ‘recently’ (see Section 2.5.10). Both
length and update have no meaning if the variable is not present in the data-set. Before a variable is
first read, length will be zero, and update will be .false..

There is no special routine to return a complete list of the variables present in a uv data set, however
this information is present in the item “vartable”. This is a text file with each line consisting of two
fields separated by a blank. The first is the “type” (either a, r, d, ¢, i or j) of the variable, the second is
the variables name. The following section of FORTRAN lists the variables present in a uv data set.

character var*12,name*(?)
integer iostat,tno,item

call uvopen(tno,name,’0ld’)
call haccess(tno,item,’vartable’,’read’,iostat)
call hreada(item,var,iostat)
dowhile(iostat.eq.0)
call output(var(3:10))
call hreada(item,var,iostat)
enddo
call hdaccess(item,iostat)
call uvclose(tno)

2.5. UV DATA SETS 2-7

Object | Type N,P1,P2,P3
data channel nchan, start, width, step
wide nchan, start, width, step
velocity nchan, start, width, step
reference | channel —, start, width, —
wide —, start, width, —
velocity —, start, width, —
coord wavelength | — — —, —
nanosec _— —, —
planet — —, plmaj, plmin, plangle
selection | amplitude | n, — — —
window n, —, —, —

Table 2.2: Arguments to UVSET, for STATUS=0LD

2.5.9 Keeping Track of UV Variables

With many variables streaming past, there is a need to keep track on some particular variables. It would
be rather inefficient and laborious to need to continually call uvprobvr, to check on particular variables.
The uvtrack routine is used to instruct the uv routines to keep track of when certain variable changes
its value, and to perform special processing on these variables at a later stage. Typically uvtrack would
be called soon after uvopen, marking all the variables of particular interest. The special processing that
the uv routines perform is dictated by the switches argument. This is a string, consisting of several
characters, each character representing a particular processing step to be taken. Currently there are two
switches — u and c. The u switch is used by uvupdate, whereas the ¢ switch is used by uvcopyvr.

The routine uvupdate returns a .true. value if one of the variables, marked with the u switch, has been
updated “recently” (see Section 2.5.10).

The routine uvcopyvr copies variables marked with the ¢ switch, from the input dataset (given by tin)
to the output dataset (given by tout) if they have changed “recently” (see Section 2.5.10). You need
only mark the variables in the input dataset.

2.5.10 When Do UV Variables Change?

A uv variable can change its value in any part of the uv variable stream. So it can change its value
after each call to uvread, uvnext or uvscan. The uv routines which need to know if a uv variable has
changed (uvprobvr, uvcopyvr and uvupdated) normally (i.e. by default) work on whether the particular
variable(s) of interest has changed since the last “mark” in the uv stream. By default any routine which
causes more of the uv stream to be read (uvread, uvscan and uvnext) move this marker to the current
point in the uv stream, before reading more. The uvmark routine provides greater control at marking the
position in the stream. Calling

call uvmark(tno,.true.)

sets the marker at the current position in the uv file, and disables uvread, etc, from resetting the marker.
Calling

call uvmark(tno,.false.)

also sets the marker at the current position, and enables uvread, etc, to reset the marker on each call.

2.5.11 Massaging Steps Performed by UVREAD — UVSET

As mentioned above, the uvread routine can perform, at the programmers request, extra processing steps
on the visibility data. These steps consist of averaging and resampling frequency channels, uv coordinate

2-8 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

conversion and some corrections for planet observations. The steps are requested by calls to uvset. In the
call to uvset, the argument object (a string) gives the general processing step that is being requested.
The type argument (another string) gives more specific details, and the arguments n (integer) and p1,
p2 and p3 (reals) give any numerical values needed.

Note that the set-up given by uvset only becomes correctly activated during the next call to uvread.
Before this next call, the setup is in a somewhat nebulous state. So you should not expect various other
routines associated with uvread to work as expected until after the next call to uvread. Associated
routines include uvflgwr and uvinfo.

Table 2.2 summarizes the possible values of the arguments to uvset. Here the column titled “Object”
and “Type” are the possible string values that object and type can take on. The third column gives the
meaning for the parameters n,pl,p2,p3. Dashes in the third column indicate that the arguments value is
ignored in this particular call. While several processing can be performed simultaneously (several calls to
uvset will be needed to specify them all), others are mutually inconsistent. When mutually inconsistent
steps are requested, the last requested step is honored. Each processing step requires further explanation.

object="data’ This gives operations on the spectral data. Type ’channel’ selects the channels to be
returned, and possible averaging together of the channel data. If the original channels are numbers
from 1 to IV, then, by using type=’channel’, uvread will return nchan massaged channels, where
channel i of the massaged channels is formed by averaging width channels of the original data,
starting at channel (i — 1) - step + start. If uvset is called with nchan being zero, all channels are
selected (note that this only makes sense if start, step and width are all 1).

type=’wide’ is similar, but uses the continuum data rather than the spectral data.

type=’velocity’ is also similar, returning a weighted sum of the spectral data. However in this
case start, width and step are given in units of km/s (rather than channels). This is particularly
useful if the spectrometer setup is not constant throughout the data or there is no Doppler tracking,
and so the velocity of a given channel changes. Note that ’channel’, wide’ and ’velocity’ are
mutually exclusive. The default is ’channel’ (or wide if there is no spectral data in the file), with
start,increment and width of 1.

If there are fewer than nchan channels, then dummy channels, which are flagged as bad, are added.
If nchan is specified as 0, then uvread will return as many channels as possible.

object="reference’ The “reference line” is a spectral channel, or an average of spectral channels, which
the main data is divided by. Typically the reference line would be a strong point source (e.g. a
maser). The resultant data is essentially normalized and shifted, but it also has atmospheric-based
and instrument-base calibration problems removed. The extra parameters needed to describe the
reference line is the same as for object=’data’, except that the number of channels, and the
increment is ignored (there is only ever one reference line). The default is not to have a reference
line.

object=’coord’ This sets the units of the u and v coordinates returned in the preamble. Using
’wavelength’ or ’nanosec’ sets the units of the returned v and v. For ’wavelength’, the sky
frequency used is that of the first channel returned. The default value is *nanosec’.

object="planet’ This causes the u and v coordinates to be scaled and rotated, and the correlation
values to be scaled, to adjust for changes when observing planets. The parameters plmaj, plmin
and plangle give the reference size (arcseconds) and position angle (degrees) of the planet. If the
reference size is 0, then the size of the first selected data record is used.

object=’selection’ This gives extra control over the uv selection process (see 2.6). Currently there is
only one possible type, amplitude’, which enables or disables the amplitude selection process. If
the argument n is positive, then amplitude selection is applied (i.e. the normal action), otherwise
amplitude selection is not applied.

2.5.12 Setting Up UVWRITE — UVSET

object="corr’ The uv routines allow the correlation data to be stored on disk, either as floating point
numbers, or as 16 bit integers with an associated scale factor. The 16 bit format roughly halves

2.5. UV DATA SETS 2-9
Object | Type N,P1,P2,P3
corr c _— —, —
j _—, —, —
data channel | — — —, —
wide —— — —

Table 2.3: Arguments to UVSET, for STATUS=NEW

Object Units P1,P2

time Julian date tmin,tmax

dra radians dramin, dramax
ddec radians ddecmin, ddecmax
ra radians ramin, ramax
dec radians decmin, decmax
uvrange wavelengths | uvmin, uvmax
uvnrange nanoseconds | uvmin, uvmax
pointing arcseconds pntmin, pntmax
visibility vismin, vismax
increment incr, —

on state, —
polarization | FITS code polval, —
amplitude ampmin, ampmax
frequency GHz freqmin, freqmax
source

window win, —

antennae antl, ant2

or - -

and - -

clear - -

Table 2.4: Arguments to UVSELECT

the disk space required, but slows the read and write operation, and can cause precision problems.
On the first call to uvwrite, the uv routines decide on the format to use, using a simple rule. The
uvset call can be used to override this rule. To be of use, it must be called before the first call to
uvwrite. The type argument is a single character, being ‘r’ or ¢j’, which instructs floating point
or scaled integers, respectively, to be used.

object=’data’ This conrtols whether UVWRITE writes the data to the corr or wcorr variable. The
default is to write it to the corr item (i.e. it assumes that the data is spectral, rather than
continuum data).

2.5.13 Selection Steps Performed by UVREAD — UVSELECT

Another function performed by uvread is skip or flag data that is not required. The routine uvselect
is used to instruct uvread on which data are to be selected and rejected. Normally the programmer will
not call uvselect directly, but will use the SelInput and SelApply routines (see Section 2.6). The Users
Manual gives a description about the way the user normally interacts with these routines.

Generally uvselect will be called many times, each call giving a different selection or discard criteria. The
routines SelInput and SelApply merely sequentially parse and pass the user-given criteria to uvselect.
Hence the ‘grammar’ of the sequence of calls to uvselect (i.e. use of “or”, or multiple occurrences of
criteria based on the same parameter) is the same as the ‘grammar’ of the user-specified task parameter.
The ‘grammar’ will not be repeated here.

The argument object is a string giving the parameter on which a select/discard criteria is based. The
arguments pl and p2 (both double precision) give added numerical parameters. Generally pl,p2 give a
range of parameter values to select or discard. Note that the units of the values are consistent with the

2-10 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

Object Units No. Values Returned
restfreq GHz nread

velocity km/s nread
bandwidth GHz nread
frequency GHz nread

sfreq GHz nread

visno 1

line 6

amprange | (flux units) 3

Table 2.5: Arguments to UVINFO

units of the underlying uv variables. These are not necessarily the most convenient units for the user,
and so the user interface (given by Sellnput and SelApply) performs some conversion between user-units
and program-units.

There are a few additions objects, when compared with the SelInput and SelApply routines. These
include the ra and dec objects, which give the pointing centre RA and DEC (after dra and ddec have
been taken into account). Another is the and operator. Uvselect treates and and or as having identical
precedence, and handles these operators in the order in which they are given. Beware of this lack of
precedence.

The clear object causes the selection criteria to be reset to its default of selected everything.

The argument flag determines whether data which matches the associated criteria is to be selected
(flag=.true.) or discarded (flag=.false.).

For example, to select data with Julian days 2444239.5 to 2444240.5 (i.e. data for 1 January, 1980), use:
call uvselect(tno,’time’,2444239.5d0,2444240.540, .true.)

To select all data, except for 1 January, 1980, use:
call uvselect(tno,’time’,2444239.5d0,2444240.540, .false.)

Note: In the ’antennae’ criteria, an antennae number of 0 is treated as a “match-all” number.

2.5.14 Getting Information After UVREAD

The routine uvinfo returns information about the data returned by the last call to uvread. The argument
object is a character string indicating the information that is desired. The argument data is a double
precision array, containing the returned information. Possible values for object are:

’restfreq’ Data contains the rest frequency (GHz) for each channel returned by uvread.

’velocity’ Data contains the velocity (km/s) for each channel returned by uvread.

’frequency’ Data contains the frequency (GHz) of the channel returned by uvread, after removing the
doppler contribution.

’bandwidth’ Data contains the bandwidth (GHz) of each channel returned by uvread.
’sfreq’ Data contains the sky frequency (GHz) of each channel returned by uvread.

’visno’ Data contains a single number, which is the visibility number (running from 1 upwards) of the
last channel read.

’amprange’ Data contains three values. The first value indicate the sort of amplitude selection that
was requested for this record, and the second and third values give a flux range. Possible value of
data(1) are -1 (data outside the range [data(2),data(3)] were rejected), O (no amplitude selection
was active) or +1 (data inside the range [data(2),data(3)] were rejected).

2.6. UV SELECTION — SELINPUT AND SELAPPLY 2-11

Object Units

time Julian day.

antennae | Baseline number = 256*ant1 + ant2.
One of antl or ant2 can be zero.
uvrange Wavelengths.

uvnrange | Nanoseconds.

visibility | Visibility number (1 relative).

dra Radians.

ddec Radians.

pointing Arcseconds.

amplitude | Same as correlation data.
window Window Number.

Table 2.6: Arguments to SelProbe

For example, consider the following code fragment.

integer maxchan

parameter (maxchan=512)

integer tno,nread

complex data(maxchan)

logical flags(maxchan)

double precision preamble(4),velocity(maxchan)

call uvread(tno,preamble,data,flags,maxchan,nread)
call uvinfo(tno,’velocity’,velocity)

After the call to uvinfo will contain the velocity of each channel read by uvread.

2.6 UV Selection — Sellnput and SelApply

subroutine SellInput(key,sels,maxsels)
logical function SelProbe(sels,object,value)
subroutine SelApply(tno,sels,flag)

These routines are the usual programmer interface to the uv selection routines. They perform the parsing
and checking of the user input, and the calling of the uvselect routine to actually implement the selection
process. For more information see uv selection in the Users Manual, and the uvselect routine in this
Programmers Manual.

SelInput calls the keya routine to get the user-specified selection criteria. This criteria is then broken
into an intermediate form. The argument key is the keyword to be used. Generally it should be ’select’.
The real array sels (of size maxsels elements) is used to hold the intermediate form of the selection.

SelApply takes a selection criteria, in its intermediate form, and calls the uvselect routine to apply it.
The argument flag determines whether criteria is actually to be used for selection (flag=.true.), or
rejection (flag=.false.).

SelProbe returns information about whether uv data with a particular parameter value may have been
selected. It does not guarantee that such data might exist in any particular data file. It also has the
limitation that information is not present to convert “uvrange” and “uvnrange” calls into each other.
These should be treated with caution. The sels array is the intermediate form returned by SelInput,
and value is a double precision value, giving the parameter value that is of interest. The object argument
determines the meaning (and the units) of this value. Possible values are given in Table 2.6.

2-12 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

Flag | Meaning

‘r? Get reference linetype specification (keyword ’ref?).
’s? Get Stokes/polarisations (keyword ’stokes’).
4’ Perform input selection (keyword ’select’).

10 Get data linetype specification (keyword >line’).
’p’ Apply planet rotation and scaling.

W’ Return u and v in wavelengths.

’1° Default number of channels is 1.

’c? Apply selfcal gain solutions.

’x? Data must be cross-correlation data.
’a’ Data must be auto-correlation data.

b’ Input must be a single file.

Table 2.7: Flag Values for the uvDatInp Call

Note that this does not support all objects to uvselect. The name must be given in full (no abbreviations
and case is significant).

2.7 The UVDAT routines

The uvdat routines are a layer of routines which sit on top of the uvio routines. They are used to read
old uv data-sets. They perform a number of functions commonly used in handling uv data. The services
include:

e Retrieve a number of standard task parameters (dealing with uv files) from the user. These include
the vis, line, select, stokes and ref keywords. The uvDat routines support processing of several
visibility files, and simplifies the book-keeping involved in tracking the several files.

e Apply antenna gain solutions to the data on the fly, if applicable.

e Perform polarization conversion steps, if required.

The uvdat routines still allow the programmer to use most of the uvio routines, to get the best of both
worlds. Routines available are:

subroutine uvDatInp(key,flags)

logical function uvDatOpn(tno)

subroutine uvDatCls()

subroutine uvDatRd(preamble,data,flags,n,nread)
subroutine uvDatWRd(data,flags,n,nread)
subroutine uvDatGti(object,ival)

subroutine uvDatGtr(object,rval)

subroutine uvDatGta(object,aval)

subroutine uvDatSet(object,ival)

logical function uvDatPrb(object,dval)

The uvDatInp routine is called to setup the uvDat routines, and to retrieve the user parameters. The
key argument (a character string) gives the name of the keyword to use to retrieve the input visibility
data-set name. Normally it will be ’vis’. The flags argument specifies what processing steps are to
be performed, and which user parameters to retrieve. The flags argument is a character string, each
character representing a processing step or parameter retrieval request. The legitimate characters are
given in Table 2.7.

The uvDatInp subroutine should be called when retrieving task parameters (i.e. between calls to keyini
and keyfin. It does not open any files.

2.8. IMAGE DATA SETS 2-13

The logical function uvDatOpn is responsible for opening the requested uv data-set, and performing most
of the initialization steps (e.g. calling uvio routines to set the selection, linetype and planet processing
options requested by its caller and by the user). uvDatOpn returns .true. if a visibility file was success-
fully opened. Otherwise it returns .false., indicating that there are no more files to process. uvDatOpn
also returns the handle of the opened uv data-set, in the variable tno. The routine uvDatCls closes the
opened uv data-set. When dealing with several files, the caller will go through the sequence: uvDatOpn,
read data, uvDatCls, until uvDatOpn returns .false. (indicating no more files).

After opening, the uvDatRd routine can be used to read through the data. The arguments are the same
as the uvread call, except that the file handle (tno) is not required. The routine uvDatWRd is equivalent
to the uvwread routine — that is it reads the “wide” channels, ignoring the current linetype.

The uvDatGt routines are a set of inquiry routines, for the caller to determine what is going on inside
the uvdat routines. Blurb-blurb.

The uvDatSet routine is used for the caller to instruct uvdat on what to do. Blurb-blurb

The uvDatPrb routine is used in exactly the same way (with the same restrictions) as the SelProbe
routine — it is used to determine information about the selection criteria in force. Its arguments are the
same as the SelProbe routine, except that the sels array is not needed (this array is stored internally
in the uvdat routines.

2.8 Image Data Sets

These routines access image data sets.

subroutine xyopen(tno,dataname,status,naxis,nsize)
subroutine xyclose(tno)

subroutine xyread(tno,index,array)

subroutine xywrite(tno,index,array)

subroutine xysetpl(tno,naxis,nsize)

Here xyopen opens the image data set, and readies it for reading or writing. Dataname is the name of the
data set, status is either ‘0ld’ or ‘new’, depending on whether an old data set is being opened to be
read, or a new data set is being created. Naxis gives the dimension of the nsize array. Naxis is always
an input parameter. Nsize gives the size, along each axis of the image. When opening an old data set,
nsize is filled in by xyopen, and passed back to the caller. For a new data set, nsize must be set to the
size of the desired image before the open routine is called. The argument tno is the handle passed back
by the open routine, and is used in all subsequent calls to identify the data set.

Xyclose closes the data set.

Xyread and xywrite read or write a single row of the image. The row number is given by index, and
the pixel data is stored in array (a real array). By default, xyread and xywrite access a row in the first
image of a multi-image data set. The routine xysetpl is used to change this default to another image.
In this naxis gives the dimension of the nsize array, and nsize is an integer array giving the indices
along the third, fourth, etc, dimension of access. For example, to access the n’th image in a cube, use:

call xysetpl(tno,1,n)

2.9 Image Coordinate System

MIRIAD defines and stores image coordinate system information in a similar fashion to AIPS and
FITS. Most cubes will have coordinates along its three axis of RA, DEC and velocity. The item ctype

2-14 CHAPTER 2. MIRIAD SUBROUTINE LIBRARY

Ctype Crval Crpix Cdelt Equation

RA--—-xxx Qo 10 Ao a=ag+ Aa/cos(d)(i —io)
DEC--xxx 50 7,'0 Ad 0= 50 + A&(z - 20)
VELO-xxx o 19 Av v =wvg+ Av(i—ip)

Others o 10 Ax x=uxo+ Az(i —ig)

Table 2.8: Image Coordinate System

gives the type of coordinate along a particular axis, whereas crval, crpix and cdelt give the value of
the coordinate at the reference pixel, the value of the reference pixel, and the increment between pixels,
respectively. Unlike AIPS and FITS, RA and DEC are given in radians, and velocity is given in km/sec.
RA and DEC will generally need to be converted to hours,minutes,seconds, or degrees,minutes,seconds,
before being presented to the user.

Table 2.8 gives quite approximate formulae for converting from pixel number to an astronomical coordi-
nate. For more accurate formulae, see AIPS Memo No. 27, “Non-linear Coordinate Systems in AIPS”
(Eric Greisen).

For example, the following code fragment calculates RA, DEC and velocity.

This code fragment checks that the axis are in the order RA, DEC then velocity (i.e. the normal ordering)
and aborts if they are not. Smarter code would allow them in any order, and would probably treat any
unrecognized ctype as a linear coordinate system. It uses default values (if values of crval, crpix and cdelt
are missing) of 0, 1 and 1. Probably better default values could be chosen, though if ctype is an item,
then we can be fairly certain that the other parameters will also be present.

2.10 Region of Interest and Pixel Blanking

It is a common situation for the user to want to process a limited subset of an image. It is also common
for an image to contain pixels which are “blanked” or have an “undefined value”. MZRZAD routines
are available to treat these two pixel selection operations together. The input to these routines are the
task parameters which describe the subregion the user is interested in, and a masking item that may be
associated with an image. The output is a description of the pixels selected.

Each image dataset may have a masking item. This is a bitmap containing a flag for each pixel, indicating
whether the pixel is good or bad. For bad pixels, the pixel value actually stored in the image is not defined,
though it will be a legal or typical value. Zero, or the value of the pixel before blanking, is a good choice.

2.10.1 Regular Regions of Interest

Generally a minimum of three routines are needed to process even “regular” regions of interest. By
“regular” we mean that the region of interest is describable by a bottom left corner and top right corner
(i.e. it is a filled grid). Th