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Chapter 1

Program Development

Programs are developed in the usual manner, making calls to the MIRIAD subroutine library. It may
be convenient to pass code through the RATTY preprocessor before compiling. RATTY preprocesses
a few language extensions into standard Fortran, and flags a few bad programming practises. When
linking, the MIRIAD object library, libmir, is used.

1.1 General Programming Conventions

MIRIAD tasks should be written in Fortran-77. Though you should program in standard FORTRAN,
two extensions will generally be needed by the programmer. Firstly MIRIAD uses both upper and
lower case character strings (Fortran-77 strictly supports only upper case characters. However almost all
compilers support both upper and lower case, and it would be a reasonably simple preprocessing job to
convert all of MIRIAD to a strictly upper case system if the need ever arises). Generally MIRIAD

routines are case-sensitive, with lower case being preferred.

Secondly MIRIAD tasks should use the maxdim.h include file where appropriate. This include file
defines a parameter, maxdim, which gives the maximum image dimension that a task should be prepared
to accept. Currently this is set to 4096, but by using maxdim to define needed storage, it should be
reasonably easy to rebuild all MIRIAD tasks to handle larger images. The include file also defines a
parameter maxbuf, which is a guide to the maximum amount of internal data storage that a program
should contain.

Despite the encouragement to use this include file, programmers are generally discouraged from using
include files and common blocks. This is far from a strict rule. Avoid them if you can.

See Chapter 3 for a description of some utilities which simplify the development of code.

1.2 In-Line Documentation

Documentation for MIRIAD tasks and subroutines is included as comments within the body of the
code (delimited by special “directives”). This documentation is stripped out by the doc program to
produce a .doc file. This .doc file is then used by the on-line help facilities and the manual generation
utilities.

This documentation should be at the head of the source code. In FORTRAN notation, the documentation
“directives” are:

c= [routine name] [one-line description] (for programs)

c* [routine name] [one-line description] (for subroutines)

c& programmer ID

1
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c: comma-separated list of categories

c+

c start of multi-line description block

c@ keyword (for tasks)

c multi-line keyword description (for tasks)

c< standard keyword (for tasks - deprecated form)

c--

For FORTRAN, comment lines can begin with either an uppercase or a lowercase c. In-line documentation
in C is analogous, except that comment lines begin with a /*. Note also that once a /* is entered,
everything until the next */ is considered a comment; it is the programmer’s responsibility to determine
where to place the */.

The entries in the comma-separated list of categories should be:

For executables:
General Utility Data Transfer Visual Display
Calibration uv Analysis Map Making Deconvolution
Plotting Map Manipulation Map Combination Map Analysis
Profile Analysis Model Fitting Tools Other

For subroutines:
Baselines Calibration Convolution Coordinates
Display Error-Handling Files Fits
Fourier-Transform Gridding Header-I/O History
Image-Analysis Image-I/O Interpolation Least-Squares
Log-File Low-Level-I/O Mathematics Model
PGPLOT Plotting Polynomials Region-of-Interest
SCILIB Sorting Strings Terminal-I/O
Text-I/O Transpose TV User-Input
User-Interaction Utilities uv-Data uv-I/O
Zeeman Other

A Program Example

By way of illustration, below is the in-code documentation for MIRIAD task varplot which uses the
“directives” noted previously.

c= varplot - Plot uv variables

c& lgm

c: uv analysis, plotting

c+

c VARPLOT makes X,Y plots selected variables from a uv data set.

c Only integer, real, and double precision variables maybe plotted.

c When curser is in the plot window, the following keys are active:

c X - expand window in X to give one column of plots

c Y - expand window in Y to give one row of plots

c Z - expand window in both X and Y to show only one plot

c N - step to "next" plot in x or y or both depending on expansion

c@ vis

c Miriad uv data-set. No default.

c@ device

c PGPLOT plotting device. No default.

c@ xaxis

c Name of variable to be plotted along x-axis. Default is ut time.

c@ yaxis

c Name of variable to be plotted along y-axis. No default.

c@ multi
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c Make multiple plots or a single plot? Yes yields multiple plots,

c No yields a single plot with multiple lines as needed. Default

c is yes.

c@ compr

c Compress number of x or y variables to be plotted by averaging

c over spectral windows. Currently only SYSTEMP can be averaged.

c--

The task’s name is “varplot”, its one-line description is “Plot uv variables”, the responsible programmer
is “lgm”, and the program is categorized as both a “uv analysis” program and a “plotting” program. It
has a general description (the text following the c+ line), and it has 6 keywords that the user may set:
“vis”, “device”, “xaxis”, “yaxis”, “multi”, and “compr”.

A Subroutine Example

By way of illustration, below is the in-code documentation for MIRIAD subroutine axistype, which
uses the “directives” noted previously.

c* Axistype - Find the axis label and plane value in user friendly units

c& mchw

c: plotting

c+

subroutine AxisType(lIn,axis,plane,ctype,label,value,units)

c

implicit none

integer lIn,axis,plane

character ctype*9,label*13,units*13

double precision value

c

c Find the axis label and plane value in user friendly units.

c

c Inputs:

c lIn The handle of the image.

c axis The image axis.

c plane The image plane along this axis.

c Output:

c ctype The official ctype for the input axis.

c label A nice label for this axis.

c value The value at the plane along this axis.

c units User friendly units for this axis.

c--

Note that the programmer has woven executable code into the documentation (the lines that are not
commented out): anything between the c+ and the c-- is considered to be part of the documentation,
even though the lines are actually part of the subroutine code itself.

A subroutine source code file (or a program source code file) may contain multiple subroutines, each
documented as above.

1.3 Code History

All source code files should contain comments (near the start of the file) describing the creation and mod-
ification history. This is quite important in the MIRIAD development environment, where programs
are spread across many computers and programmers are separated by many miles.

Below are typical history comments (taken from the “key” routines, subroutine key.for):

c************************************************************************
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c The key routines provide keyword-oriented access to the command line.

c

c History:

c rjs 6jun87 Original version.

c bs 7oct88 Converted it to use iargc and getarg. Added -f flag.

c rjs 8sep89 Improved documentation.

c nebk 10sep89 Added mkeyr. I think rjs will not like it (Too right!).

c rjs 19oct89 Major rewrite to handle @ files.

c rjs 15nov89 Added keyf routine, and did the rework needed to support

c this. Added mkeyf. Modified mkeyr.

c pjt 26mar90 Added mkeya. like mkeyr (again, bobs will not like this)

c pjt 10apr90 some more verbose bug calls.

c rjs 23apr90 Made pjt’s last changes into standard FORTRAN (so the

c Cray will accept it).

c pjt 10may90 Make it remember the programname in keyini (se key.h)

c for bug calls - introduced progname

c rjs 22oct90 Check for buffer overflow in keyini.

c pjt 21jan90 Added mkeyi, variable index is now idx, exp is expd

c************************************************************************

1.4 Task Version Identification

The first executable statement of a program should be to print out a version identification. The following
is typical:

c****************************************************************

program Clean

.

.

.

character version*(*)

parameter(version=’Clean: version 1.0 26-jan-90’)

.

.

.

call output(version)

This gives a version and the date when the task CLEAN was last modified. Additionally, this version
identification should be included in any history generated by the task.



Chapter 2

MIRIAD Subroutine Library

2.1 Task Parameters

subroutine keyini

subroutine keyr(keyword,value,default)

subroutine keyd(keyword,value,default)

subroutine keyi(keyword,value,default)

subroutine keyl(keyword,value,default)

subroutine keya(keyword,value,default)

subroutine keyf(keyword,value,default)

subroutine mkeyr(keyword,values,nmax,n)

subroutine mkeyi(keyword,values,nmax,n)

subroutine mkeya(keyword,values,nmax,n)

subroutine mkeyf(keyword,values,nmax,n)

logical function keyprsnt(keyword)

subroutine keyfin

The key routines are used to get task parameters, which describe the processing that is to be performed.
Typically the key routines will be called in the first few lines of the task, and never called again. All
checking for the validity of the parameters should be carried out at this time.

Keyini initializes the key routines, and must be the first routine called. Similarly keyfin tidies up, and
closes down. Keyr, keyd, keyi, keyl and keya return the value of a task parameter from the user.
Their inputs are keyword (a character string) and default, the default value for the parameter. The

keyword must be in lower case. The task parameter is returned in value. Keyi, keyr, keyl, keyd and
keya are used for integer, real, logical, double precision and character values respectively. Only one value
is returned at a time. The keyf routine is like keya, except that the string entered by the user is treated
as a file name, and wildcard expansion is performed. The key routines can be called several times, giving
the same keyword, and each successive call will get the next value associated with the keyword.

For example, if TRC is defined by the user as:

% TRC = 45,50

then the code:

call keyi(’trc’,n1,1)

2-1
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call keyi(’trc’,n2,1)

will return the values 45 and 50 to n1 and n2 respectively.

These routines always return a value, even if it is only the default value. To determine if a parameter
was actually set by the use, the keyprsnt routine can be called. This returns .true. if a value for the
keyword still remains. An alternate way to test if a value is still present is to use a default which is clearly
illegal (e.g. a blank string for a file name, or 0 for a pixel index).

The mkey routine return all values entered by the user for that particular keyword where all the values
of the keyword are of the same data type. For these routines values is an array of nmax elements. The
number of values returned (which may be zero) is given by n.

2.2 Error Handling

Many MIRIAD routines perform error checking internally, and bomb out if an error is detected. Other
MIRIAD routines pass back a status value (generally the last subroutine argument). A status value of
zero indicates success, -1 indicates end-of-file, and a positive value indicates some other error (what the
positive values indicate is system dependent). Two routines can be called to indicate an error:

subroutine bug(severity,text)

subroutine bugno(severity,number)

Here severity is a single character, being either ’w’, ’e’ or ’f’, meaning warning, error and fatal
respectively. When bug or bugno is called with a fatal error, it will not return. Rather it will cause the
task to exit. For routine bug, text is a character string describing the error. For routine bugno, number
is a status value, returned by a MIRIAD routine.

2.3 Text I/O

Though standard Fortran-77 routines would appear to be adequate for text i/o, there are invariably minor
differences between systems, mainly related to carriage control. Additionally placing them in a module
of routines forces the programmer to follow the ‘handle’ convention.

subroutine output(text)

subroutine txtopen(handle,name,status,iostat)

subroutine txtread(handle,text,length,iostat)

subroutine txtwrite(handle,text,length,iostat)

subroutine txtclose(handle)

Output prints text (a character string) on the users terminal.

Txtopen opens a text file (passing back a handle) with name name. Status can be either ’old’ or ’new’.
When opening a new file, any old files which exist with the same name may be deleted. Txtread and
txtwrite read and write a character string, text, of length characters. Length is passed back from
txtread, whereas it is passed into txtwrite. It may be zero in either case. All these routines return an
i/o status variable, iostat.

Txtclose closes the file.
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2.4 General Data Set Handling

MIRIAD makes few distinctions between what some systems (e.g. GIPSY, AIPS and FITS) call “data”
and “header”. Instead a data “file” (usually called a data set in this document) consists of a collection
of items. Some items are small (a few bytes) whereas others are large (e.g. the collection of pixels in an
image). All items are accessed by their name (a lower case string of up to 8 alphanumeric characters.
Underscore and dollar characters are to be avoided). Convention dictates the names assigned to the
various items within a data set. For example, the item name “image” is always used to store the pixel
data of an image, “naxis” is the number of dimensions in an image, and “naxis1” is the number of pixels
along the first axis of an image. New sorts of data items can be invented as the need arises.

What would be conventionally call header variables, are stored as small items. The naming convention
is close to the FITS standard (though the names are lower case).

The following sections describe routines that in some way package together several calls to the lower level
i/o routines. Their first argument is a “handle” returned by one of the open routines.

2.5 UV Data Sets

2.5.1 General

At the very least, a uv data set can be viewed as a sequence of correlation records, with associated u and
v coordinates, time and baseline number. Associated with each correlation is a flag, indicating whether
the correlation is believed to be good or bad.

The MIRIAD uv data structure required a more general structure. Unfortunately this is more compli-
cated and somewhat cumbersome for simple cases. A uv data set can be viewed as an ordered (generally
time ordered) stream of named records or “variables”. There are markers in this data stream, to indicate
when several variables change “simultaneously” (i.e. they correspond to the same time). Each variable
consists of an array of values, the type of which can be either integer, real or double precision, etc. Cor-
relation data, u and v coordinates, time and baseline numbers are specific examples of variables. Because
of the special nature of these variables, special routines are available to simplify accessing them. A list
of the variables that may be present in a uv data set is given in Appendix I.

In addition to this variable stream, a uv file will contain a file giving flagging information.

It should be noted that “variables” and “items” are quite distinct. For a particular data set, variables
vary, or at least may vary, whereas data items are fixed. The notion of variables is unique to uv data sets,
whereas all MIRIAD data sets are composed of data items. The stream of uv variables is implemented
as three data items, called visdata, vartable and flags.

There is a “miriad” of uv routines. The routines used to access and manipulate a uv data set are given
in the following table.

2.5.2 Open, Close and Rewind

The routine uvopen opens a uv data set and readies it for access. Here dataname is a string giving the
data set’s name. Status can be either ’old’ or ’new’, depending whether an old data set is being read,
or a new data set is being created. Tno is an integer handle passed back by the open routine (and is used
for all future access to the data set). The routine uvclose closes the data set. The routine uvrewind

positions a uv file at its beginning, and allows it to be read again.

2.5.3 Reading and Writing Visibilities

The routines uvread and uvwrite are routines used to read and write the correlation data (and the
associated flagging information). Here preamble is an array of four double precision elements, data is an
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subroutine uvopen(tno,dataname,status)

subroutine uvread(tno,preamble,data,flags,n,nread)

subroutine uvflgwr(tno,flags)

subroutine uvwrite(tno,preamble,data,flags,n)

subroutine uvclose(tno)

subroutine uvrewind(tno)

subroutine uvwread(tno,data,flags,n,nread)

subroutine uvwwrite(tno,data,flags,n)

subroutine uvgetvra(tno,varname,data)

subroutine uvgetvri(tno,varname,data,n)

subroutine uvgetvrr(tno,varname,data,n)

subroutine uvgetvrd(tno,varname,data,n)

subroutine uvgetvrc(tno,varname,data,n)

subroutine uvrdvra(tno,varname,data,default)

subroutine uvrdvri(tno,varname,data,default)

subroutine uvrdvrr(tno,varname,data,default)

subroutine uvrdvrd(tno,varname,data,default)

subroutine uvrdvrc(tno,varname,data,default)

subroutine uvprobvr(tno,varname,type,length,update)

subroutine uvputvra(tno,varname,data)

subroutine uvputvri(tno,varname,data,n)

subroutine uvputvrr(tno,varname,data,n)

subroutine uvputvrd(tno,varname,data,n)

subroutine uvputvrc(tno,varname,data,n)

subroutine uvtrack(tno,varname,switches)

integer function uvscan(tno,varname)

logical function uvupdate(tno)

subroutine uvmark(tno,onoff)

subroutine uvcopyvr(tin,tout)

subroutine uvnext(tno)

subroutine uvset(tno,object,type,n,p1,p2,p3)

subroutine uvselect(tno,object,p1,p2,flag)

subroutine uvinfo(tno,object,data)

Table 2.1: UV Data Subroutines
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array of n complex elements, whereas flags is an array of n logical values. Preamble, data and flags

are output from uvread, whereas they are input to uvwrite. The four elements of preamble are the
u coordinate, v coordinate (measured in nanoseconds), time (Julian date) and baseline number. The
baseline number, Bl, is calculated as:

Bl = 256A1 + A2

where A1 and A2 are the numbers of the first and second antennae respectively (antenna numbers vary
from 1 to Nantenna). The array data is used to store the complex correlation data, whereas the logical
values of the array flags indicate whether the corresponding correlation is deemed good or bad (true or
false, respectively). For uvread, n limits the number of correlations that can be read; the actual number
of correlations read is passed back as nread. Uvread can perform a number of additional processing steps
– see the description of uvset (Section 2.5.11).

The flags of a data file can be modified using the uvflgwr subroutine. When called, the flags associated
with the previous call to uvread and uvwrite are changed to those values given in the flags array. Using
uvflgwr when reading a visibility file, is the method used to develop flagging tasks. Currently uvflgwr

has the limitation that the linetype is either ‘channel’ or ‘wide’, and that the ‘start’ and ‘width’ linetype
parameters are 1 (see Section 2.5.11). Also uvflgwr aborts if no flagging file exists

2.5.4 Reading and Writing Continuum Visibilities

MIRIAD uv datasets can contain both spectral and continuumn visibility data simultaneously. When
both are present, the user/programmer will normally select which of these data to read, using the uvset

routine (see Section 2.5.11). However this allows only one “linetype” to be read and written at a time.
The uvwread and uvwwrite allow the programmer to read and write the continuum data independently
of the “linetype”. These routines completely bypass linetype processing. They should be used only when
both a particular linetype, and the continuum data are required. Uvwread should be called after the call
to uvread, whereas uvwwrite should be called before the call to uvwrite.

The routine uvwflgwr is the “wide” equivalent of uvflgwr. That is, by calling uvwflgwr, you can
overwrite the flags associated with the previous call to uvwread and uvwwrite. Note that uvwflgwr

aborts if no flagging file exists.

2.5.5 Direct Access to UV Variables

The main routines to access the variables are the uvgetvr and uvputvr routines. These read or write
(respectively) an array of variables of given name (varname). The data read or written are in the array
data (which can be a character string or an integer, real or double precision array, depending on the
routine called). Exactly n values are read or written. Except for character strings, it is a fatal error,
when reading, if n does not agree with the actual number of values for the variable). For a character
string, the string is blank padded on a read (no n parameter is needed).

When reading an old data set, the uvgetvr routines should not be called before the first call to uvread.
When creating a data set, the initial values for all variables should be written, by calls to the uvputvr

routines, before the first call to the uvwrite routine (see Section 2.5.7 for some enlightenment on this
issue).

Often it occurs that we are interested in a variable which has a single value, but we are not sure if the
variable is present in the dataset. It would be possible to handle this with uvprobvr (Section 2.5.8) and
uvgetvr. If the variable is not present, then we would want to use a default value. The uvrdvr routines
package these three steps. It returns the value of the variable, data. If the variable is missing from the
data stream, the default value, default, is returned. One disadvantage is that the uvrdvr routines only
every return a single value (the first value in a multi-element variable).

The routine uvread functions by scanning through the variable streams, and returns with its results,
when the “correlation data” (“corr” or “wcorr”) is encountered. If you are not interested in reading
the correlation data (i.e. if you do not intend calling uvread), then the uvscan routine can be used to
scan through the variable stream until another variable is encountered. Actually uvscan may well read
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somewhat past the desired variable, until it has read all variables which changed simultaneously with the
desired one. Uvscan returns 0 is the variable was successfully found, -1 if an end of file was encountered,
or 1 if the variable was not found. Note that it may not make a great deal of sense to intermix calls to
uvscan and uvread.

2.5.6 Variable Override

Occassionally it is useful for the user to override the value of a uv variable. This is especially useful if
the value of the variable is both wrong and important! When uvio opens an old file, for each variable
name that is present in the uv file, it checks if there is a corresponding item with the same name. If there
is, then the value of the item is used to override the value of the variable. Unfortunately the item must
consist of a single number, and this single number will be copied into each value of the variable (if the
variable consists of several elements).

2.5.7 UVNEXT

The uv i/o routines need to know what variables change simultaneously. all variables that have changes
simultaneously. Conversely routine uvwrite assumes that all variables that change simultaneously with
the variables that it writes, have already been written with routine uvputvr. Hence if the programmer is
using uvscan, uvread or uvwrite, then simultaneity is not a concern, as long as variables are read after
uvscan/uvread, and written before uvwrite. The routine uvnext provides better control, where this is
needed. For an input file, a call to uvnext causes the next set of variables (which change simultaneously)
to be read. For an output file, uvnext causes a marker to be written into the data, to indicate that
variables written after the call did not change simultaneously with variables written before the call.

2.5.8 Determining UV Variables and Their Characteristics

Routine uvprobvr checks for the existence of a variable, and returns information about it. The string
varname, the variable name, is input. The single character type is output, being either ‘a’, ‘r’, ‘d’, ‘c’, ‘i’,
‘j’ or ‘ ’ (a blank), which indicates (respectively) that the variable is of type string (ascii), real, double
precision, complex, integer, short integer or (in the case of the blank) that the variable is not present in
the data-set. The output integer length gives the number of elements in the variable, and the output
logical update indicates whether the variable has been updated ‘recently’ (see Section 2.5.10). Both
length and update have no meaning if the variable is not present in the data-set. Before a variable is
first read, length will be zero, and update will be .false..

There is no special routine to return a complete list of the variables present in a uv data set, however
this information is present in the item “vartable”. This is a text file with each line consisting of two
fields separated by a blank. The first is the “type” (either a, r, d, c, i or j) of the variable, the second is
the variables name. The following section of FORTRAN lists the variables present in a uv data set.

character var*12,name*(?)

integer iostat,tno,item

call uvopen(tno,name,’old’)

call haccess(tno,item,’vartable’,’read’,iostat)

call hreada(item,var,iostat)

dowhile(iostat.eq.0)

call output(var(3:10))

call hreada(item,var,iostat)

enddo

call hdaccess(item,iostat)

call uvclose(tno)
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Object Type N,P1,P2,P3

data channel nchan, start, width, step
wide nchan, start, width, step
velocity nchan, start, width, step

reference channel —, start, width, —
wide —, start, width, —
velocity —, start, width, —

coord wavelength —, —, —, —
nanosec —, —, —, —

planet — —, plmaj, plmin, plangle
selection amplitude n, —, —, —

window n, —, —, —

Table 2.2: Arguments to UVSET, for STATUS=OLD

2.5.9 Keeping Track of UV Variables

With many variables streaming past, there is a need to keep track on some particular variables. It would
be rather inefficient and laborious to need to continually call uvprobvr, to check on particular variables.
The uvtrack routine is used to instruct the uv routines to keep track of when certain variable changes
its value, and to perform special processing on these variables at a later stage. Typically uvtrack would
be called soon after uvopen, marking all the variables of particular interest. The special processing that
the uv routines perform is dictated by the switches argument. This is a string, consisting of several
characters, each character representing a particular processing step to be taken. Currently there are two
switches – u and c. The u switch is used by uvupdate, whereas the c switch is used by uvcopyvr.

The routine uvupdate returns a .true. value if one of the variables, marked with the u switch, has been
updated “recently” (see Section 2.5.10).

The routine uvcopyvr copies variables marked with the c switch, from the input dataset (given by tin)
to the output dataset (given by tout) if they have changed “recently” (see Section 2.5.10). You need
only mark the variables in the input dataset.

2.5.10 When Do UV Variables Change?

A uv variable can change its value in any part of the uv variable stream. So it can change its value
after each call to uvread, uvnext or uvscan. The uv routines which need to know if a uv variable has
changed (uvprobvr, uvcopyvr and uvupdated) normally (i.e. by default) work on whether the particular
variable(s) of interest has changed since the last “mark” in the uv stream. By default any routine which
causes more of the uv stream to be read (uvread, uvscan and uvnext) move this marker to the current
point in the uv stream, before reading more. The uvmark routine provides greater control at marking the
position in the stream. Calling

call uvmark(tno,.true.)

sets the marker at the current position in the uv file, and disables uvread, etc, from resetting the marker.
Calling

call uvmark(tno,.false.)

also sets the marker at the current position, and enables uvread, etc, to reset the marker on each call.

2.5.11 Massaging Steps Performed by UVREAD – UVSET

As mentioned above, the uvread routine can perform, at the programmers request, extra processing steps
on the visibility data. These steps consist of averaging and resampling frequency channels, uv coordinate
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conversion and some corrections for planet observations. The steps are requested by calls to uvset. In the
call to uvset, the argument object (a string) gives the general processing step that is being requested.
The type argument (another string) gives more specific details, and the arguments n (integer) and p1,
p2 and p3 (reals) give any numerical values needed.

Note that the set-up given by uvset only becomes correctly activated during the next call to uvread.
Before this next call, the setup is in a somewhat nebulous state. So you should not expect various other
routines associated with uvread to work as expected until after the next call to uvread. Associated
routines include uvflgwr and uvinfo.

Table 2.2 summarizes the possible values of the arguments to uvset. Here the column titled “Object”
and “Type” are the possible string values that object and type can take on. The third column gives the
meaning for the parameters n,p1,p2,p3. Dashes in the third column indicate that the arguments value is
ignored in this particular call. While several processing can be performed simultaneously (several calls to
uvset will be needed to specify them all), others are mutually inconsistent. When mutually inconsistent
steps are requested, the last requested step is honored. Each processing step requires further explanation.

object=’data’ This gives operations on the spectral data. Type ’channel’ selects the channels to be
returned, and possible averaging together of the channel data. If the original channels are numbers
from 1 to N , then, by using type=’channel’, uvread will return nchan massaged channels, where
channel i of the massaged channels is formed by averaging width channels of the original data,
starting at channel (i − 1) · step + start. If uvset is called with nchan being zero, all channels are
selected (note that this only makes sense if start, step and width are all 1).

type=’wide’ is similar, but uses the continuum data rather than the spectral data.

type=’velocity’ is also similar, returning a weighted sum of the spectral data. However in this
case start, width and step are given in units of km/s (rather than channels). This is particularly
useful if the spectrometer setup is not constant throughout the data or there is no Doppler tracking,
and so the velocity of a given channel changes. Note that ’channel’, ’wide’ and ’velocity’ are
mutually exclusive. The default is ’channel’ (or wide if there is no spectral data in the file), with
start,increment and width of 1.

If there are fewer than nchan channels, then dummy channels, which are flagged as bad, are added.
If nchan is specified as 0, then uvread will return as many channels as possible.

object=’reference’ The “reference line” is a spectral channel, or an average of spectral channels, which
the main data is divided by. Typically the reference line would be a strong point source (e.g. a
maser). The resultant data is essentially normalized and shifted, but it also has atmospheric-based
and instrument-base calibration problems removed. The extra parameters needed to describe the
reference line is the same as for object=’data’, except that the number of channels, and the
increment is ignored (there is only ever one reference line). The default is not to have a reference
line.

object=’coord’ This sets the units of the u and v coordinates returned in the preamble. Using
’wavelength’ or ’nanosec’ sets the units of the returned u and v. For ’wavelength’, the sky
frequency used is that of the first channel returned. The default value is ’nanosec’.

object=’planet’ This causes the u and v coordinates to be scaled and rotated, and the correlation
values to be scaled, to adjust for changes when observing planets. The parameters plmaj, plmin

and plangle give the reference size (arcseconds) and position angle (degrees) of the planet. If the
reference size is 0, then the size of the first selected data record is used.

object=’selection’ This gives extra control over the uv selection process (see 2.6). Currently there is
only one possible type, ’amplitude’, which enables or disables the amplitude selection process. If
the argument n is positive, then amplitude selection is applied (i.e. the normal action), otherwise
amplitude selection is not applied.

2.5.12 Setting Up UVWRITE – UVSET

object=’corr’ The uv routines allow the correlation data to be stored on disk, either as floating point
numbers, or as 16 bit integers with an associated scale factor. The 16 bit format roughly halves
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Object Type N,P1,P2,P3

corr c —, —, —, —
j —, —, —, —

data channel —, —, —, —
wide —, —, —, —

Table 2.3: Arguments to UVSET, for STATUS=NEW

Object Units P1,P2

time Julian date tmin,tmax
dra radians dramin, dramax
ddec radians ddecmin, ddecmax
ra radians ramin, ramax
dec radians decmin, decmax
uvrange wavelengths uvmin, uvmax
uvnrange nanoseconds uvmin, uvmax
pointing arcseconds pntmin, pntmax
visibility vismin, vismax
increment incr, –
on state, –
polarization FITS code polval, –
amplitude ampmin, ampmax
frequency GHz freqmin, freqmax
source
window win, –
antennae ant1, ant2
or –, –
and –, –
clear –, –

Table 2.4: Arguments to UVSELECT

the disk space required, but slows the read and write operation, and can cause precision problems.
On the first call to uvwrite, the uv routines decide on the format to use, using a simple rule. The
uvset call can be used to override this rule. To be of use, it must be called before the first call to
uvwrite. The type argument is a single character, being ‘r’ or ‘j’, which instructs floating point
or scaled integers, respectively, to be used.

object=’data’ This conrtols whether UVWRITE writes the data to the corr or wcorr variable. The
default is to write it to the corr item (i.e. it assumes that the data is spectral, rather than
continuum data).

2.5.13 Selection Steps Performed by UVREAD – UVSELECT

Another function performed by uvread is skip or flag data that is not required. The routine uvselect

is used to instruct uvread on which data are to be selected and rejected. Normally the programmer will
not call uvselect directly, but will use the SelInput and SelApply routines (see Section 2.6). The Users
Manual gives a description about the way the user normally interacts with these routines.

Generally uvselect will be called many times, each call giving a different selection or discard criteria. The
routines SelInput and SelApply merely sequentially parse and pass the user-given criteria to uvselect.
Hence the ‘grammar’ of the sequence of calls to uvselect (i.e. use of “or”, or multiple occurrences of
criteria based on the same parameter) is the same as the ‘grammar’ of the user-specified task parameter.
The ‘grammar’ will not be repeated here.

The argument object is a string giving the parameter on which a select/discard criteria is based. The
arguments p1 and p2 (both double precision) give added numerical parameters. Generally p1,p2 give a
range of parameter values to select or discard. Note that the units of the values are consistent with the
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Object Units No. Values Returned

restfreq GHz nread
velocity km/s nread
bandwidth GHz nread
frequency GHz nread
sfreq GHz nread
visno 1
line 6
amprange (flux units) 3

Table 2.5: Arguments to UVINFO

units of the underlying uv variables. These are not necessarily the most convenient units for the user,
and so the user interface (given by SelInput and SelApply) performs some conversion between user-units
and program-units.

There are a few additions objects, when compared with the SelInput and SelApply routines. These
include the ra and dec objects, which give the pointing centre RA and DEC (after dra and ddec have
been taken into account). Another is the and operator. Uvselect treates and and or as having identical
precedence, and handles these operators in the order in which they are given. Beware of this lack of
precedence.

The clear object causes the selection criteria to be reset to its default of selected everything.

The argument flag determines whether data which matches the associated criteria is to be selected
(flag=.true.) or discarded (flag=.false.).

For example, to select data with Julian days 2444239.5 to 2444240.5 (i.e. data for 1 January, 1980), use:

call uvselect(tno,’time’,2444239.5d0,2444240.5d0,.true.)

To select all data, except for 1 January, 1980, use:

call uvselect(tno,’time’,2444239.5d0,2444240.5d0,.false.)

Note: In the ’antennae’ criteria, an antennae number of 0 is treated as a “match-all” number.

2.5.14 Getting Information After UVREAD

The routine uvinfo returns information about the data returned by the last call to uvread. The argument
object is a character string indicating the information that is desired. The argument data is a double
precision array, containing the returned information. Possible values for object are:

’restfreq’ Data contains the rest frequency (GHz) for each channel returned by uvread.

’velocity’ Data contains the velocity (km/s) for each channel returned by uvread.

’frequency’ Data contains the frequency (GHz) of the channel returned by uvread, after removing the
doppler contribution.

’bandwidth’ Data contains the bandwidth (GHz) of each channel returned by uvread.

’sfreq’ Data contains the sky frequency (GHz) of each channel returned by uvread.

’visno’ Data contains a single number, which is the visibility number (running from 1 upwards) of the
last channel read.

’amprange’ Data contains three values. The first value indicate the sort of amplitude selection that
was requested for this record, and the second and third values give a flux range. Possible value of
data(1) are -1 (data outside the range [data(2),data(3)] were rejected), 0 (no amplitude selection
was active) or +1 (data inside the range [data(2),data(3)] were rejected).
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Object Units

time Julian day.
antennae Baseline number = 256*ant1 + ant2.

One of ant1 or ant2 can be zero.
uvrange Wavelengths.
uvnrange Nanoseconds.
visibility Visibility number (1 relative).
dra Radians.
ddec Radians.
pointing Arcseconds.
amplitude Same as correlation data.
window Window Number.

Table 2.6: Arguments to SelProbe

For example, consider the following code fragment.

integer maxchan

parameter(maxchan=512)

integer tno,nread

complex data(maxchan)

logical flags(maxchan)

double precision preamble(4),velocity(maxchan)

.

.

.

call uvread(tno,preamble,data,flags,maxchan,nread)

call uvinfo(tno,’velocity’,velocity)

After the call to uvinfo will contain the velocity of each channel read by uvread.

2.6 UV Selection – SelInput and SelApply

subroutine SelInput(key,sels,maxsels)

logical function SelProbe(sels,object,value)

subroutine SelApply(tno,sels,flag)

These routines are the usual programmer interface to the uv selection routines. They perform the parsing
and checking of the user input, and the calling of the uvselect routine to actually implement the selection
process. For more information see uv selection in the Users Manual, and the uvselect routine in this
Programmers Manual.

SelInput calls the keya routine to get the user-specified selection criteria. This criteria is then broken
into an intermediate form. The argument key is the keyword to be used. Generally it should be ’select’.
The real array sels (of size maxsels elements) is used to hold the intermediate form of the selection.

SelApply takes a selection criteria, in its intermediate form, and calls the uvselect routine to apply it.
The argument flag determines whether criteria is actually to be used for selection (flag=.true.), or
rejection (flag=.false.).

SelProbe returns information about whether uv data with a particular parameter value may have been
selected. It does not guarantee that such data might exist in any particular data file. It also has the
limitation that information is not present to convert “uvrange” and “uvnrange” calls into each other.
These should be treated with caution. The sels array is the intermediate form returned by SelInput,
and value is a double precision value, giving the parameter value that is of interest. The object argument
determines the meaning (and the units) of this value. Possible values are given in Table 2.6.
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Flag Meaning

’r’ Get reference linetype specification (keyword ’ref’).
’s’ Get Stokes/polarisations (keyword ’stokes’).
’d’ Perform input selection (keyword ’select’).
’l’ Get data linetype specification (keyword ’line’).
’p’ Apply planet rotation and scaling.
’w’ Return u and v in wavelengths.
’1’ Default number of channels is 1.
’c’ Apply selfcal gain solutions.
’x’ Data must be cross-correlation data.
’a’ Data must be auto-correlation data.
’b’ Input must be a single file.

Table 2.7: Flag Values for the uvDatInp Call

Note that this does not support all objects to uvselect. The name must be given in full (no abbreviations
and case is significant).

2.7 The UVDAT routines

The uvdat routines are a layer of routines which sit on top of the uvio routines. They are used to read
old uv data-sets. They perform a number of functions commonly used in handling uv data. The services
include:

• Retrieve a number of standard task parameters (dealing with uv files) from the user. These include
the vis, line, select, stokes and ref keywords. The uvDat routines support processing of several
visibility files, and simplifies the book-keeping involved in tracking the several files.

• Apply antenna gain solutions to the data on the fly, if applicable.

• Perform polarization conversion steps, if required.

The uvdat routines still allow the programmer to use most of the uvio routines, to get the best of both
worlds. Routines available are:

subroutine uvDatInp(key,flags)

logical function uvDatOpn(tno)

subroutine uvDatCls()

subroutine uvDatRd(preamble,data,flags,n,nread)

subroutine uvDatWRd(data,flags,n,nread)

subroutine uvDatGti(object,ival)

subroutine uvDatGtr(object,rval)

subroutine uvDatGta(object,aval)

subroutine uvDatSet(object,ival)

logical function uvDatPrb(object,dval)

The uvDatInp routine is called to setup the uvDat routines, and to retrieve the user parameters. The
key argument (a character string) gives the name of the keyword to use to retrieve the input visibility
data-set name. Normally it will be ’vis’. The flags argument specifies what processing steps are to
be performed, and which user parameters to retrieve. The flags argument is a character string, each
character representing a processing step or parameter retrieval request. The legitimate characters are
given in Table 2.7.

The uvDatInp subroutine should be called when retrieving task parameters (i.e. between calls to keyini

and keyfin. It does not open any files.
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The logical function uvDatOpn is responsible for opening the requested uv data-set, and performing most
of the initialization steps (e.g. calling uvio routines to set the selection, linetype and planet processing
options requested by its caller and by the user). uvDatOpn returns .true. if a visibility file was success-
fully opened. Otherwise it returns .false., indicating that there are no more files to process. uvDatOpn
also returns the handle of the opened uv data-set, in the variable tno. The routine uvDatCls closes the
opened uv data-set. When dealing with several files, the caller will go through the sequence: uvDatOpn,
read data, uvDatCls, until uvDatOpn returns .false. (indicating no more files).

After opening, the uvDatRd routine can be used to read through the data. The arguments are the same
as the uvread call, except that the file handle (tno) is not required. The routine uvDatWRd is equivalent
to the uvwread routine – that is it reads the “wide” channels, ignoring the current linetype.

The uvDatGt routines are a set of inquiry routines, for the caller to determine what is going on inside
the uvdat routines. Blurb-blurb.

The uvDatSet routine is used for the caller to instruct uvdat on what to do. Blurb-blurb

The uvDatPrb routine is used in exactly the same way (with the same restrictions) as the SelProbe

routine – it is used to determine information about the selection criteria in force. Its arguments are the
same as the SelProbe routine, except that the sels array is not needed (this array is stored internally
in the uvdat routines.

2.8 Image Data Sets

These routines access image data sets.

subroutine xyopen(tno,dataname,status,naxis,nsize)

subroutine xyclose(tno)

subroutine xyread(tno,index,array)

subroutine xywrite(tno,index,array)

subroutine xysetpl(tno,naxis,nsize)

Here xyopen opens the image data set, and readies it for reading or writing. Dataname is the name of the
data set, status is either ‘old’ or ‘new’, depending on whether an old data set is being opened to be
read, or a new data set is being created. Naxis gives the dimension of the nsize array. Naxis is always
an input parameter. Nsize gives the size, along each axis of the image. When opening an old data set,
nsize is filled in by xyopen, and passed back to the caller. For a new data set, nsize must be set to the
size of the desired image before the open routine is called. The argument tno is the handle passed back
by the open routine, and is used in all subsequent calls to identify the data set.

Xyclose closes the data set.

Xyread and xywrite read or write a single row of the image. The row number is given by index, and
the pixel data is stored in array (a real array). By default, xyread and xywrite access a row in the first
image of a multi-image data set. The routine xysetpl is used to change this default to another image.
In this naxis gives the dimension of the nsize array, and nsize is an integer array giving the indices
along the third, fourth, etc, dimension of access. For example, to access the n’th image in a cube, use:

call xysetpl(tno,1,n)

2.9 Image Coordinate System

MIRIAD defines and stores image coordinate system information in a similar fashion to AIPS and
FITS. Most cubes will have coordinates along its three axis of RA, DEC and velocity. The item ctype
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Ctype Crval Crpix Cdelt Equation
RA---xxx α0 i0 ∆α α = α0 + ∆α/ cos(δ0)(i − i0)
DEC--xxx δ0 i0 ∆δ δ = δ0 + ∆δ(i − i0)
VELO-xxx v0 i0 ∆v v = v0 + ∆v(i − i0)
Others x0 i0 ∆x x = x0 + ∆x(i − i0)

Table 2.8: Image Coordinate System

gives the type of coordinate along a particular axis, whereas crval, crpix and cdelt give the value of
the coordinate at the reference pixel, the value of the reference pixel, and the increment between pixels,
respectively. Unlike AIPS and FITS, RA and DEC are given in radians, and velocity is given in km/sec.
RA and DEC will generally need to be converted to hours,minutes,seconds, or degrees,minutes,seconds,
before being presented to the user.

Table 2.8 gives quite approximate formulae for converting from pixel number to an astronomical coordi-
nate. For more accurate formulae, see AIPS Memo No. 27, “Non-linear Coordinate Systems in AIPS”
(Eric Greisen).

For example, the following code fragment calculates RA, DEC and velocity.

This code fragment checks that the axis are in the order RA, DEC then velocity (i.e. the normal ordering)
and aborts if they are not. Smarter code would allow them in any order, and would probably treat any
unrecognized ctype as a linear coordinate system. It uses default values (if values of crval, crpix and cdelt
are missing) of 0, 1 and 1. Probably better default values could be chosen, though if ctype is an item,
then we can be fairly certain that the other parameters will also be present.

2.10 Region of Interest and Pixel Blanking

It is a common situation for the user to want to process a limited subset of an image. It is also common
for an image to contain pixels which are “blanked” or have an “undefined value”. MIRIAD routines
are available to treat these two pixel selection operations together. The input to these routines are the
task parameters which describe the subregion the user is interested in, and a masking item that may be
associated with an image. The output is a description of the pixels selected.

Each image dataset may have a masking item. This is a bitmap containing a flag for each pixel, indicating
whether the pixel is good or bad. For bad pixels, the pixel value actually stored in the image is not defined,
though it will be a legal or typical value. Zero, or the value of the pixel before blanking, is a good choice.

2.10.1 Regular Regions of Interest

Generally a minimum of three routines are needed to process even “regular” regions of interest. By
“regular” we mean that the region of interest is describable by a bottom left corner and top right corner
(i.e. it is a filled grid). The routines of interest are:

subroutine BoxInput(key,dataset,boxes,maxboxes)

subroutine BoxSet(boxes,naxis,nsize,flags)

subroutine BoxInfo(boxes,naxis,blc,trc)

All routines require an integer array, boxes, which is used to accumulate a description of the region of
interest. Its size is given by argument maxboxes. The required size is a function of the complexity of the
region of interest, etc. Typically 1024 elements should be adequate.

BoxInput reads the task parameters that the user gives to specify the region of interest. The way this
is specified is moderately general and (consequently) complex. See the description in the users guide.
Included is the ability to give the region specification in a variety of units. To convert between some
units and absolute pixels, BoxInput needs information about the coordinate system being used (e.g.
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character ctype1*8,ctype2*8,ctype3*8

double precision crval1,crpix1,cdelt1,crval2,crpix2,cdelt2

double precision crval3,crpix3,cdelt3

double precision alpha,delta,v

integer i,j,k

.

.

(assume i,j,k contains the grid coordinate of interest)

.

call rdhda(tno,’ctype1’,ctype1,’ ’)

if(ctype1(1:5).ne.’RA---’)

* call bug(’f’,’First axis is not RA’)

call rdhda(tno,’ctype2’,ctype2,’ ’)

if(ctype2(1:5).ne.’DEC--’)

* call bug(’f’,’Second axis is not DEC’)

call rdhda(tno,’ctype3’,ctype3,’ ’)

if(ctype1(1:5).ne.’VELO-’)

* call bug(’f’,’Third axis is not velocity’)

call rdhdd(’crval1’,crval1,0.d0)

call rdhdd(’crval2’,crval2,0.d0)

call rdhdd(’crval3’,crval3,0.d0)

call rdhdd(’crpix1’,crpix1,1.d0)

call rdhdd(’crpix2’,crpix2,1.d0)

call rdhdd(’crpix3’,crpix3,1.d0)

call rdhdd(’cdelt1’,cdelt1,1.d0)

call rdhdd(’cdelt2’,cdelt3,1.d0)

call rdhdd(’cdelt3’,cdelt3,1.d0)

alpha = crval1 + cdelt1/cos(crval2)*(i-crpix1)

delta = crval2 + cdelt2 *(j-crpix2)

v = crval3 + cdelt3 *(k-crpix3)

Table 2.9: Coordinate System Code Example
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parameters crval, crpix and cdelt). BoxInput determines these from the MIRIAD data-set given
by dataset. Normally this is the name of the image dataset which we are interested in. If dataset is
blank, BoxInput still functions correctly, but cannot perform unit conversion.

BoxInput breaks up the specification into an intermediate form, and stores it in the boxes array. The
keyword associated with the task parameter is key, which would normally be ’region’. If the key

argument is blank, BoxInput does not attempt to get a region-of-interest specification, but instead just
initialises the boxes array with the default region-of-interest.

The programmer passes to BoxSet information about the size of the image of interest. This is given in the
integer array nsize, which consists if naxis elements (as with the corresponding arguments to xyopen).
The flags argument is an input character string, giving information about the default region of interest.
It can consist of:

q The default region of interest is the inner quarter of the image.

1 The default region of interest consists of the first plane only.

s The region of interest must be “regular”. If it is not, BoxSet generates a warning message, and will
use the bounding box of the selected region.

BoxInfo returns integer arrays blc and trc, which give the bottom left corner and top right corner of
the region which encloses the overall region of interest. Both these arrays are of size naxis integers.

2.10.2 Arbitrary Regions of Interest and Blanking Information

In addition to the above routines, there are three routines to allow treatment of more complex regions of
interest. These are:

subroutine BoxMask(tno,boxes,maxboxes)

logical function BoxRect(boxes)

subroutine BoxRuns(naxis,nsize,flags,boxes,

* runs,maxruns,nruns,xblx,xtrc,yblc,ytrc)

BoxMask requests that an image mask be ANDed with the region requested by the user. The input to the
routine is the image dataset handle, tno, whereas the boxes array is an input/output integer array used
to accumulate region of interest information. BoxMask can be called multiple times, each time ANDing
in a new image mask. This is an optional routine. Typically it would be called for each of the input
images, so that “blanked” pixels in the input images would be excluded from the region of interest.

BoxRect returns .true. if the region of interest is rectangular (i.e. whether the region of interest is
entirely described by blc and trc.

BoxRuns returns the region selected for a particular plane. The input arguments naxis and nsize are
analogous to the same arguments in the xysetpl routine. runs is an integer array of size 3 × maxruns.
On output it indicates which pixels in the plane are to be process. Runs consists of nruns entries of the
form:

j,imin,imax

This indicates that pixels (imin,j) to (imax,j) are to be processed. All entries are non-overlapping. There
may be zero or many entries for a particular value of j. The table is in increasing order of j and imin. On
output, the integers xblc, xtrc, yblc and ytrc give the bottom left and top right corners, in x and
y, of the smallest subimage which contains the selected pixels. The flags argument, an input character
string, indicates some extra options. These are:

r Make the coordinates, returned in the runs table, relative to (xblc,yblc).
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2.10.3 Reading and Writing Blanking Information

Though the box routines are the preferred way to read blanking information, it is possible to read the
blanking information associated with an image directly. Also a routine is needed to write blanking
information. Blanking information can be read and written by two sets of routines. These routines are:

subroutine xyflgrd(tno,index,mask)

subroutine xyflgwr(tno,index,mask)

subroutine xymkrd(tno,index,runs,n,nread)

subroutine xymkwr(tno,index,runs,n)

Here tno is the image handle returned by xyopen, index gives the row number (analogous to xyread

and xywrite). Analogous to the working of xyread and xywrite, the plane of the masking file that the
routines access is set with the xysetpl routine.

The xyflgrd and xyflgwr routines read and write the logical array mask. The mask array has a .true.

value if the corresponding pixel is good, or .false. if it is bad (or blanked).

The xymkrd and xymkwr routines read and write a “runs” array. The runs array is a table of the form:

imin,imax

where pixels imin to imax are good (not blanked). Note that the size of runs is n integers of n/2 pairs
of ordinates. Runs is input to xywrite and output from xyread. For xyread, nread returns the number
of elements of runs that have been filled in.

Because many images are completely good (i.e. no blanked pixels), it would be superfluous to always
carry around blanking information. Hence the mask containing the blanking information need not exist.
If it does not exist, the read routines described above will return indicating that all pixels are good. A
programmer can check if the mask exists, using the logical function hdprsnt:

logical exists

logical hdprsnt

.

.

.

exists = hdprsnt(tno,’mask’)

2.11 Scratch Files

subroutine scropen(tno)

subroutine scrread(tno,buffer,offset,length)

subroutine scrwrite(tno,buffer,offset,length)

subroutine scrclose(tno)

The scratch i/o routines are used to create and read and write from a scratch file containing real-valued
data. Here tno is a handle passed back by the open routine, and must be used in all subsequent calls
to the scratch i/o routines. Scrread and scrwrite read and write scratch data to/from the real array
buffer. Length values are accessed, starting at the offset given by offset (for a scratch file of N real
values, offset can vary from 0 to N − 1).
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2.12 General Item Routines

These routines read and write “small” items (items consisting of a single value), or perform some operation
on an entire item.

In many processing systems these routines would be called “header handling” routines. This has led to
the rather misleading use of the letters “hd” as a component of each of the following routine names.

subroutine rdhda(tno,itemname,value,default)

subroutine rdhri(tno,itemname,value,default)

subroutine rdhdr(tno,itemname,value,default)

subroutine rdhdd(tno,itemname,value,default)

subroutine rdhdc(tno,itemname,value,default)

subroutine wrhda(tno,itemname,value)

subroutine wrhdi(tno,itemname,value)

subroutine wrhdr(tno,itemname,value)

subroutine wrhdd(tno,itemname,value)

subroutine wrhdc(tno,itemname,value)

logical function hdprsnt(tno,itemname)

subroutine hdcopy(tin,tout,itemname)

subroutine hdprobe(tno,itemname,descr,type,n)

Before these can be accessed, the data set must be opened with either xyopen, uvopen or hopen. Tno

is the handle returned by these open routines. The name of the item to access is given by itemname (a
string). These names should be up to 8 lowercase alphanumeric characters, and (where possible) they
should conform to the FITS standard. The rdhd routines read an item, returning its value in value.
The routines rdhda, rdhdi, rdhdr, rdhdd and rdhdc return a string, integer, real, double precision or
complex value, respectively. If the item is not found, the rdhd routines return the default value given by
default (note value and default should be a string, integer, real, double precision or complex values,
depending on the routine called). Similarly the wrhd routines save the value of an item.

The logical function hdprsnt can be called to determine if a particular item exists.

The routine hdcopy copies an item from one data set to another. The item can be arbitrarily large.
Hdcopy copies from the data set, whose handle is given by tin, to the data set whose handle is tout.

The routine hdprobe is used to probe the characteristics of an item. The string descr returns a brief
description of the item (intended for people, not programs, to read). If the item consists of a single
value (or string), the description gives the value. Otherwise the description gives the type and size of the
item (in human readable form). The string type is one of ’nonexistent’, ’integer*2’, ’integer’,

’real’, ’double’, ’complex’, ’character’, ’text’ or ’binary’ (unknown type). The integer n

gives the number of elements in the item. If the item does not exist, type returns ’nonexistent’ and n

returns zero.

2.13 History Item

Most data sets will have an associated history item. This is a text file containing a description of the
data set, and the processing that has been performed on it. The routines to access the history item are
as follows:

subroutine hisopen(tno,status)

subroutine hisread(tno,line,eof)

subroutine hiswrite(tno,line)

subroutine hisinput(tno,taskname)
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subroutine hisclose(tno)

Hisopen must be called before the history item can be accessed. Here tno is the handle passed back
by a previous call to xyopen or uvopen, and status is a string which can be either ’read’, ’write’
or ’append’. Hisread and hiswrite can be called to read from, or append to the history item a line
at a time (line is a character string). When reading, the logical value eof turns true when the end of
the history item is encountered. Hisinput writes a number of history comments, giving the command
line input parameters. This is a particularly useful routine to summarize user inputs. For hisinput,
taskname is the name of the task. Hisclose closes the history item.

Note that there is no routine to copy a history file from one dataset to another. This is easily performed
using the hdcopy routine described in the previous section.

For uniformities sake, history comments follow a standard format. The following is an example of the
history comments written by the task DEMOS:

DEMOS: Miriad DeMos: version 1.0 30-apr-90’

DEMOS: Input parameters are

DEMOS: vis=uvn

DEMOS: map=mosclean

DEMOS: Pointing offset used (arcsec): 24.0 -30.0

Note that all comments start with the task name. The first comment gives a version date of the program.
The next three lines were generated by HisInput, and the last line was an extra comment.

2.14 Low Level I/O Routines

All i/o routines described above are built on top of a set of low level routines. In MIRIAD, a “data set”
is a collection of named items. Each item is an unstructured, byte addressable collection of data. It is up
to the higher level software to impose some structure to the data items, and to provide a better interface
for the high level programmer. The higher level routines should be adequate for most programmers.
Though direct use of the following low level routines is discouraged, there are some instances where they
may be needed.

subroutine hopen(tno,dataname,status,iostat)

subroutine hclose(tno,iostat)

subroutine haccess(tno,item,itemname,status,iostat)

subroutine hdaccess(item,iostat)

subroutine hdelete(tno,itemname,iostat)

integer function hsize(item)

subroutine hreada(item,buffer,iostat)

subroutine hreadb(item,buffer,offset,length,iostat)

subroutine hreadj(item,buffer,offset,length,iostat)

subroutine hreadi(item,buffer,offset,length,iostat)

subroutine hreadr(item,buffer,offset,length,iostat)

subroutine hreadd(item,buffer,offset,length,iostat)

subroutine hwritea(item,buffer,iostat)

subroutine hwriteb(item,buffer,offset,length,iostat)

subroutine hwritej(item,buffer,offset,length,iostat)

subroutine hwritei(item,buffer,offset,length,iostat)

subroutine hwriter(item,buffer,offset,length,iostat)

subroutine hwrited(item,buffer,offset,length,iostat)
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Only two operations can be performed on a data set as a whole, namely to open and to close it. The
routines to perform these are hopen and hclose. Here tno is a handle passed back by hopen, dataname
is a string giving the name of the data set, and status is either ’old’ (when accessing an old data set) or
’new’ (when creating a data set). Iostat is a error indicator, being zero if the operation was successful.
Because of buffering performed by the i/o routines, it is very important to close a data set when it is no
longer needed.

Before any item can be read or written, it must be “opened” with the haccess routine. The inputs to this
are: tno (the handle passed back by hopen); itemname, a string giving the item name; status, a string
which can be ’read’, ’write’ ’append’ or ’scratch’ (if an item is opened with status=’scratch’,
an item is created, but then destroyed when the item is closed). The outputs from haccess are firstly a
handle, item, which is used to perform i/o on the item, and secondly a status return, iostat. All items
should be closed down, with hdaccess, before the data set as a whole is closed.

The hdelete subroutine deletes an item. The integer function hsize returns the size of an item in bytes.

There are a group of i/o routines provided to read and write items. Because items are stored in a machine
independent format, there are separate i/o routines for each data type. Each i/o routine performs the
conversion between the external (disk) format and the hosts internal format. For example, the hreadr

routine reads real numbers. On disk, MIRIAD reals are stored as IEEE floating point numbers.
Internally, however, reals are stored in the hosts machines “real number format”. The hreadr routine
performs the conversion. The read/write routines know nothing about the type of the data it is accessing.
The caller must know this, and call the appropriate read/write routine.

All read/write routines take the handle item (passed back by haccess) as their first argument, and
pass back an i/o status as the last argument. The second argument is a buffer, which can be either a
character string (hreada, hwritea, hreadb, hwriteb), an integer array (hreadj, hwritej, hreadi,

hwritei), real (hreadr, hwriter) or double precision (hreadd, hwrited). Hreada and hwritea read/write
a text file, performing i/o on a line at a time. Text files are stored using a line-feed character to delimit
the end of a line (i.e. the normal UNIX convention, or the VMS Stream LF convention). The rou-
tines hreadb and hwriteb perform i/o on bytes, no conversion being performed – these routines should
rarely be needed). The routines hreadj and hwritej assume the integers are externally stored as 16 bit
quantities, whereas hreadi and hwritei assume the integers are externally stored as 32 bit quantities.
Internally, integers are always stored in the hosts standard integer format (int in C, and an INTEGER in
FORTRAN. Real and double precision values are externally stored in IEEE 32 bit and 64 bit floating
point format. All read/write routines (except hreada and hwritea) take (as inputs) a byte offset and
byte length as their third and fourth arguments. Both offset and length must be a multiple of the
size of the data type being accessed (e.g. they must be a multiple of 4 for reals, or 8 for double precision
numbers). Apart from this alignment restriction, data items can be read in a random fashion.

All I/O routines pass back an i/o status indicator. A value of zero indicates success, -1 indicates end-of-
file, and any other values indicate some other error (that is system dependent).

2.15 Numeric Routines

The following numeric routines should be used in preference to others that do the same function, as these
are reasonably optimized. Generally these are tailored to the target machine (e.g. on the Cray these are
based on Cray SCILIB routines, on the Convex, they are partially based on VECLIB routines).

2.15.1 FFT Routines

There are three FFT routines, namely:

subroutine fftrc(in,out,sign,n)

subroutine fftcr(in,out,sign,n)

subroutine fftcc(in,out,sign,n)
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These perform one-dimensional FFTs. In all cases, sign is the sign of the exponent in the transform (i.e.
a sign of -1 is conventionally viewed as a forward transform), and n is a power of 2 giving the length of
the (full) sequence. 1

N
scaling is never performed (it is up to you to scale at the best time). In is the

input array, and out is the output array. These routines evaluate:

Out(l) =
N∑

k=1

In(k) exp(±j
2π

N
(k − 1)(l − 1))

where k and l vary from 1 to N . Fftrc transforms a real sequence (i.e. in is a real array) and outputs
only the first N/2+1 complex values. No information is lost because of the conjugate symmetry of FFTs
of real sequences. Conversely fftcr takes a complex sequence of length N/2 + 1 and produces a real
sequence of length N . Finally fftcc performs a complex to complex transform, with both input and
output being of length N .

2.15.2 Min and Max Value Routines

There are two routines to find the index of the minimum and maximum values of an array, namely:

integer function IsMin(n,data,step)

integer function IsMax(n,data,step)

2.15.3 WHEN and ISRCH Routines

subroutine whenxxx(n,array,step,target,index,nindex)

integer function isrchxxx(n,array,step,target)

The when routines return the indices of all locations in an array that have a “true relational value” to the
target. See page 4-64 of the Cray “Library Reference Manual” for more information. The isrch routines
return the first location in an array that has a “true relational value” to the target. See page 4-59 of the
Cray “Library Reference Manual”. For both routines, “xxx” can be one of ieq, ine, ilt, ile, igt,

ige, feq, fne, flt, fle, fgt or fge. These give the type of array (Integer or Floating), and the
relation (equal, not equal, less than, etc).

Because these are well optimized routines, these routines should be used in preference to straightforward
FORTRAN code that performs an equivalent function.

2.15.4 Blas and Linpack Routines

The Blas routines are “Basic Linear Algebra Subprograms”, while the Linpack routines are a suite of
linear equation solving routines. It is common to find these routines, in an optimized form, on vector
computers. Additionally they are public domain routines in standard FORTRAN, making them easy to
port. The MIRIAD library (or a system library) has these routines in their single precision real and
complex forms. There are a number of good references on Blas and Linpack routines available (e.g. 4-1
and 4-38 in the Cray “Library Reference Manual”, or the Convex “VECLIB Users Manual”).
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Chapter 3

Utility Programs

A few programs have been developed to simplify the development of good portable code.

3.1 FLINT

Flint is a FORTRAN program checker. It aims at uncovering programming bugs and bad programming
practises. Given FORTRAN source as input, Flint produces warnings on the terminal and in a listing file
(flint.log). Flint checks for variables which are unused, uninitialized or undeclared. It also checks that
the number, type and intent of arguments passed to a subroutine remains consistent amongst all calls
(an arguments intent is whether its value is input to, or output from a routine).

flint [-acdfhjkrsux2?] [-I incdir] [-o file] [-l] file ...

There are many command line switches (though the defaults are usually adequate). Invoking Flint with
the “?” switch causes it to print out brief information about Flint, and all the command line switches.
For example:

flint -?

will give some help information.

3.1.1 Making Flint Quieter

Flint assumes that the programmer follows a fairly strict programming convention. If the programmer
does not, then Flint can produce a voluminous number of warning messages. There are a number of
switches which help quieten Flint to manageable proportions.

–c Allow interwoven continuation and comment lines. Normally Flint generates warnings about this
(even though it is standard FORTRAN) An unpleasant side effect of allowing interwoven comment
and continuation lines is that comments are not copied to the listing file.

–d Do not warn when variables are not explicitly declared. Normally Flint insists that all variables must
be explicitly declared with a ‘REAL’, ‘INTEGER’, etc, statement.

–f Do not generate warnings about lines greater than 72 characters long or with an odd number of quotes.
When checking if a line is greater than 72 characters, Flint interprets tabs as if the equivalent
number of spaces had been typed (the VMS compiler treats a tab as a single character, rather than
as multiple spaces).

3-1
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–h By default, Flint does not understand hollerith data. The -h flag instructs Flint to recognize hollerith
data as integers.

–j Do not check if a variable has been initialized before being used. If a variable is not in a DATA,
COMMON, PARAMETER or SAVE statement, and if it is not a dummy subroutine argument,
then Flint normally attempts to check that the variable is initialized before it is used. It does this
by checking that it is assigned to at a earlier line in the routine than where it is first used. This
is not necessarily correct in routines with EQUIVALENCE statements, a maze of gotos, or which
have conditional blocks within loops. Applying this same rule to subroutine arguments provides
Flint with a technique for determining subroutine argument intent. Disabling initialization checking
will also disable these intent-determining rules, and so should eliminate spurious warnings about
inconsistent subroutine argument intent.

–k Suppress warnings about common blocks with possible alignment problems.

–r Do not warn about seemingly redundant variables. Redundant variables are those that are assigned
to but never otherwise used. A common source of most messages is when a value returned by a
subroutine is never used. For example, Flint will complain if you ignore values returned in an array
used by a subroutine for scratch storage, or if values returned by a general subroutine are ignored
in specific cases.

–s Load definitions of FORTRAN-IV and specific intrinsic functions. By default, Flint only knows about
the standard FORTRAN-77 generic intrinsic functions (e.g. COS, REAL, MAX). It does not know
specific function names or obsolete FORTRAN-IV functions (e.g. DCOS, FLOAT, AMAX0). The
‘s’ flag causes Flint to load the definitions of these as well.

–u Do not generate a warning about variables which do not seem to be used. By default Flint produces
such a warning for local variables (but not COMMON or PARAMETER variables).

–x Allow extended subroutine and variable names. By default Flint warns if subroutine or variable
names are longer than 8 characters, or if they contain underline or dollar characters. Using this
flag allows names of arbitrary length, with dollar and underline characters.

3.1.2 Other Flags and Arguments

–a This causes flint to include a crude cross-reference map in its log file.

–I This flag is used to give the name of a directory to search for include files. When it encounters an
‘include’ statement, flint first checks the local directory for the include file, and then checks other
directories given by the -I switch, in the order they were present on the command line. This is also
equivalent to -i.

–? This causes some help information to be printed.

3.1.3 Bugs and Shortcomings

Flint has a number of bugs and shortcomings, in addition to those described above. Flint is intended to
be run on a FORTRAN that a compiler would accept. During the early stages of program development, a
good FORTRAN compiler is a far better tool to find programming problems. Flint bugs and shortcomings
include:

• IMPLICIT statements are ignored.

• EQUIVALENCE statements are rcudely treated.

• A number of archaic, poor or non-standard FORTRAN features are not recognized. These include
the ASSIGN statement and assigned GOTO, alternate return statements, PAUSE, ENTRY, DE-
CODE, ENCODE, many archaic forms of i/o statements, NAMELIST and many VMS extensions.
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• While BYTE, INTEGER*2, INTEGER*4, REAL*4, REAL*8, etc statements are recognized, a
warning message is generated, Flint otherwise treats these variables as either standard INTEGERs
or REALs.

• Columns 72 to 80 of an input line (if they are present) are assumed to be part of the FORTRAN
statement, rather than a comment field. Flint generates a warning if a line contains more than 72
characters.

Flint recognizes the following extensions, and digests them without complaint:

• DO/ENDDO and DOWHILE/ENDDO constructs.

• INCLUDE statements.

• Lower case characters are considered equivalent to upper case. Tabs are treated as if they were the
equivalent number of spaces. The full printable ascii character set can appear in character strings.

• A comment line starting with the hash character (#).

• The INTENT statement (see the section on Interface Definition Libraries).

3.1.4 Determining the Intent of Subroutine Arguments

Whenever Flint finds a call to a subroutine, or the source of a subroutine, it attempts to determine whether
a subroutine argument is either input or output (this is called an arguments intent). Usually Flint will
build up its knowledge of a particular routines arguments by analyzing many uses of the subroutine, and
generate a warning whenever inconsistent use is noted.

Note that Flint expects an argument’s intent to be either input or output or input/output. Some routines
use an argument as input in some situations and output in others. Such routines may confuse Flint, and
it may well generate spurious messages about the variable in the subroutine call being uninitialized or
redundant, or that the arguments intent is inconsistent.

Normally Flint performs a single pass, analyzing files in the order that they are given on the command
line. When analyzing the early part of the input source, Flints knowledge of argument intent is very
poor. Thus some problems (uninitialized and redundant variables) may be missed. There are two recipes
to partially avoid this. Firstly files on the command line should be ordered with the files containing low
level subroutines first, and high level programs and application code last (generally interface definition
libraries should go first). Additionally inside files, the lower level routines should be first, and higher level
routines last. Secondly, the user can ask Flint to perform two passes of the input files, by using the -2

flag. Two passes will not necessarily correctly determine the intent of all arguments (in general N passes
will always be enough for program with subroutine calls to a depth of N ).

The following contrived example shows the worst case sort of behavior, where Flint builts up its knowledge
of argument intent quite slowly.

subroutine a(x)

real x

call b(x)

end

subroutine b(x)

real x

call c(x)

end

subroutine c(x)

real x

write(*,*)x

end
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It would require three passes for Flint to determine that the intent of argument x in subroutine a was
input (the first pass would determine the intent of x in c, the second would determine the intent of x in
b). Usually Flint determines argument intents by other means than just allowing information to bubble
up from the lowest level to the higher level routines. But in the above example, none of these could
be applied. One of the techniques is derived from initialization checking (described under the -i flag).
When determining intent accurately is important, and if the initialization checking algorithm is failing
(i.e. producing spurious messages), then initialization checking should be disabled.

Small changes can significantly change the number of passes needed to uncover all intent information.
For instance, in the example above, if the ordering of the routines was reversed (i.e. c first and a last),
or if a piece of code such as

call a(1.0)

appeared before subroutine a, then Flint would require only one pass.

3.1.5 Interface Definition Libraries

It is a common (normal) situation in program development to have a library of standard functions and
routines. Though Flint knows the interface definitions (i.e. number, type and intent of each argument)
of standard FORTRAN functions, it is desirable for users to build and use a file (or files) describing the
interfaces to their own library. This section describes the features in Flint to achieve this.

Flint can output a text file, in a pseudo-FORTRAN, which contains interface descriptions of all the
routines that it has encountered in this run. The format is:

flint -o file ....

Each routine in the output file will probably contain many ‘INTENT’ statements (part of the FORTRAN-
8X standard). INTENT is used to indicate whether a subroutine argument is input to or output from a
routine (or both), or whether this is unknown. Typically a routine description would look like:

subroutine example(arg1,arg2,arg3,arg4)

real arg1,arg2

integer arg3,arg4

intent(in) arg1,arg3

intent(out) arg3,arg4

intent(unknown) arg2

end

Here Flint believes arg1 is input, arg4 is output, and arg3 is both input and output. Flint could not
determine whether arg2 was input or output.

The user can edit an interface file created by Flint, or create an entire interface description by hand.

Such an interface description file appears as normal FORTRAN to Flint, so it can be input to Flint (to
teach Flint about a users standard routine interfaces) on subsequent uses of Flint. While these interface
definitions could be input along with normal source files, preceding the interface file with the -l (library)
switch has the advantage that the source of this file does not appear in the listing file. Warning messages
generated by analyzing this file are also suppressed.

The following example generates a interface description file, library.dat, from source files routine1.for,
routine2.for and routine3.for. The interface definition is then used in a subsequent Flint run on
program.for.

flint -o library.dat routine1.for routine2.for routine3.for

flint -l library.dat program.for
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3.2 RATTY

RATTY is a FORTRAN preprocessor, which is intended to simplify the job of developing code that is to
run on several machines. RATTY checks for some non-ANSI or dubious programming practises, secondly
it converts some FORTRAN extensions into standard FORTRAN, and thirdly it handles some compiler
directives associated with conditional compilation or code optimization.

Apart from the extra trouble of running the preprocessor before compilation, preprocessors are generally
a nuisance, in that they make the code that is developed and the code that is debugged different (both
compile and run time debugging). This tends to complicate the debugging process. To this end, RATTY
attempts to make the minimum changes necessary to code to get it to compile. Comments and indentation
are retained in the output, so that the output should be nearly as readable as the input. Additionally
when conditional compilation directives are avoided, it will be found that much code does not need to be
preprocessed on a number of compilers.

3.2.1 The Command

The command is:

% ratty [-s system] [-I incdir] [-D symbol] [-b] [-?] input output

“Input” is a text file containing a mildly extended FORTRAN, whereas “output” is the resultant standard
(?) code. The default input and output are the standard input and standard output. A few command
line flags are also recognized.

-s The string following this flag indicates the target compiler. RATTY performs some special processing
for the following compilers:

vms VAX/VMS FORTRAN compiler.

cft Cray FORTRAN compiler for both CTSS and COS.

f77 UNIX FORTRAN-77 compiler.

convex Convex C-1 compiler.

fx Alliants compiler.

trace Multiflow Trace computers.

sun Sun computers.

RATTY assumes that target compilers other than these are strict FORTRAN-77 compilers.

-I The string following this flag indicates an alternate directory to search for include files. The -I flag
can occur several times, giving several directories. When opening include files, first the current
directory is check, and then each directory given by the -I flag is check in the order in which they
appeared on the command line.

-D The name following this flag is treated as if it appeared in a #define statement. Note that unlike the
cc compiler, a space is required between the -D and the name.

-b If this flag is given, every backslash in the input is converted to two backslashes in the output. This
is useful when the target compiler treats backslash as an “escape character” (i.e. several UNIX
FORTRAN compilers).

? This causes some help (on using ratty) to be printed.
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3.2.2 Language Extensions

RATTY coverts converts the following language extensions into standard FORTRAN, where necessary.

• Tab characters are replaced with the corresponding number of blanks.

• DO/ENDDO and DOWHILE/ENDDO can be replaced with standard FORTRAN-77 loops.

• The IMPLICIT NONE and IMPLICIT UNDEFINED statements may be converted to the form
required by the local compiler, or eliminated altogether.

• INCLUDE files are expanded.

3.2.3 Optimization Directives

Vector computers occasionally need directives to help optimize some loops. The needed directives, how-
ever, vary between manufacturers. RATTY takes optimization directives in a standard form and converts
them to the form recognized by the target compiler. A directive is introduced by either a ‘c#’ or a ‘#’
starting a line (i.e. starting in column 1), for example:

c#directive

or

#directive

Either form can be used, but the ‘c#’ form is preferable, as the directive will be seen as a comment to a
standard compiler. The directives are:

ivdep This instructs the compiler to ignore any apparent vector dependencies in the immediately fol-
lowing loop. This is modestly commonly used.

maxloop nn This indicates that the loop count of the immediately following loop will not exceed ‘nn’.
This enables the compiler to optimize some short loops. For example

c#maxloop 32

do i=1,n

.

.

enddo

indicates that the do loop will not execute more than 32 times.

nooptimize This directive appears just before a do-loop that should not be optimized.

3.2.4 Conditional Compilation Directives

When coding a task for several machines, it is sometimes desirable that different code is executed for
different machines. For example, to achieve good efficiency, the inner loops may need to be different on
a scalar and vector machine.

The basic syntax is the same as the optimization directives (i.e. ‘c#’ or ‘#’ starting a line, followed by
the directive). However, as code using conditional compilation will have to be passed through RATTY to
produce the correct code, the ‘#’ form is preferred. This will be seen as an error by a standard compiler,
thus preventing code from accidently no being passed through the preprocessor.

There are four directives of interest, namely ifdef, ifndef, else and endif. Like the cpp preprocessor,
ifdef and ifndef pass the following section of code to the compiler if a particular “symbol” is defined
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or not. Currently there are only one or two symbols that are defined. Firstly a symbol with the compiler
target name is defined (the target compiler name is gained from the command line -s flag). Secondly a
symbol “vector” is defined if the target computer is a vector machine. For example the command line:

% ratty -s cft input output

causes the symbol ‘cft’ and ‘vector’ to become defined. Then, given the following code fragment from
“input”, the first section is copied to “output”, whereas the second is discarded.

#ifdef cft

.

. Use this code on the Cray.

.

#else

.

. This code on all other machines.

.

#endif
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Appendix A

Image Items

In this Appendix we will describe the items that can be present in an image dataset. MIRIAD utilities
such as prthd, imlist, itemize, puthd, copyhd and delhd may be used to browse or modify these
‘header variables’.

Note that the units used in MIRIAD are not always FITS-like, e.g. frequencies are stored in GHz
in MIRIAD, whereas in FITS one finds Hz. For example, MIRIAD keeps velocity in km s−1, sky
coordinates in radians and frequencies in GHz.

A-1
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Table A.1: Item names in MIRIAD image datasets

Item Type Units Description/Comments

bmaj,bmin real radians Beam major and minor axis FWHM.
bpa real degrees Beam position angle, measured

east from north.
bunit character The units of the pixels.
btype character The type of the image. Possible values:

intensity – Normal map.
beam – Point spread function.
depolarisation_ratio

fractional_polarisation

optical_depth

polarised_intensity

position_angle

rotation_measure

spectral_index

cdelt1,cdelt2,... double ⇒ ctype The increment between pixels.
cellscal character Latitude/longitude cell scaling

convention with frequency/velocity.
Possible values are:
CONSTANT

1/F

crpix1,crpix2,... real pixels The pixel coordinate of the reference pixel.
crval1,crval2,... double The coordinate value at the reference pixel.

radians if ctype represents a celestial coordinate.
km s−1 if ctype VELO or FELO
GHz if ctype FREQ

ctype1,ctype2,... character The type of the nth axis (as FITS CTYPE).
datamin,datamax real ⇒ bunit The minimum and maximum pixel values.
epoch real years The epoch of the coordinate system.
history text A text item containing the history of

processing performed to the data set.
image real ⇒ bunit The pixel data.
llrot double radians Eastward rotation relative to north of the

sky grid relative to the pixel grid.
lstart,lstep,lwidth real
ltype character The linetype used in making the map.
mask integer # Bitmap used to determine which pixels in

the image have been blanked.
mostable binary Mosaic information table.
naxis integer # Number of dimensions.
naxis1,naxis2,... integer # Number of pixels along each dimension.
niters integer # The total number of deconvolution iterations

performed on the image.
object character source name
observer character observers name
obsra,obsdec double radians The apparent RA and DEC of the observation

centre.
obstime double Julian date The mean observing time.
pbfwhm real arcsec Gaussian primary beam size (deprecated).
pbtype character Primary beam type. Standard values include:

HATCREEK, VLA, ATCA, WSRT

restfreq double GHz The rest frequency of the observed data.
telescop character Telescope name. Standard values include:

HATCREEK, VLA, ATCA, WSRT

vobs real km s−1 Velocity of the observatory
with respect to the rest frame,
during the observation.



Appendix B

UV Variables

A MIRIAD uv dataset is composed of a collection of items and ‘u − v variables’. The variables are
parameters that are known at the time of the observation, and include measured data, and the description
of the observation set up (e.g. correlator set up and observing centres).

Table B.1 gives a list of the items that are used to build up a MIRIAD uv dataset.

The Programmers Guide contains more detailed information on how a visibility dataset is constructed,
this Appendix only reports which variables can be found in the item visdata. The text item vartable

contains an ordered (for quick indexing) list of all the variables which exist in the visdata item.

A list of all items in a visibility dataset is summarised in Table B.1 below. A list of all the uv variables
can be obtained with the MIRIAD program uvlist.

The storage types (2nd column) in the table below are:

A -- ascii (NULL terminated)

R -- real (32 bit IEEE)

D -- double (64 bit IEEE)

C -- complex (2 * 32 bit IEEE)

I -- integer (32 bit twos complement)

J -- short (16 bit twos complement)

They are the same as the data type in the first column of the vartable item in a MIRIAD uv dataset.

Variables with two dimensions have the first dimension varying fastest, the usual FORTRAN notation.
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Table B.1: MIRIAD items in a uv visibility dataset

Item name Type Description
obstype ascii value: ‘cross’, ‘auto’ or ‘mixed’
history text history text file (in principle editable)
vartable text lookup table for all uv variables (do not edit!)
visdata mixed data stream of uv variables
flags integer optional flags for narrowband data
wflags integer optional flags for wideband data
gains mixed antenna gain table
nfeeds integer number of feeds on each antenna
ntau integer Number of delay/spectral index terms per antenna

in ‘gains’
nsols integer number of records in ‘gains’
ngains integer number of antenna gains in each record of ‘gains’
interval double gain interpolation time tolerance (days)
leakage complex polarization leakage parameters
freq0 double reference frequency for delay terms
freqs mixed frequency set up description table for ‘bandpass’
bandpass complex bandpass function gains
nspect0 integer number of windows in the bandpass function
nchan0 integer total number of channels in the bandpass function

Name Ty Units Comments

airtemp R centigr. Air temperature at observatory
antaz(nants) D deg. azimuth of antennas
antdiam R meters Antenna diameter
antel(nants) D deg. elevation of antennas
antpos(nants, 3) D nanosec Antenna equatorial coordinates
atten(nants) I dB Attenuator setting (Hat Ck)
axismax(2,nants) R arcsec Maximum tracking error in a cycle.

axismax(1,?) is azimuth error,
axismax(2,?) is the elevation error.

axisrms(2,nants) R arcsec RMS tracking error.
axisrms(1,?) is azimuth error,
axisrms(2,?) is the elevation error.

baseline R - The current antenna baseline
Baseline is stored as 256 ∗ ant1 + ant2 or
2048 ∗ ant1 + ant2 + 65536
The uv coordinates are calculated as
uvw = xyz(ant2) − xyz(ant1).
Note that this is different from the AIPS/FITS convention
(where uvw = xyz(ant1) − xyz(ant2)).
When writing this variable, software must ensure that
ant1 < ant2.
baseline is also known as preamble(4)

bin I - Pulsar bin number.
cable(nants) D nanosec measured length of IF cable (Hat Ck)
calcode A - ATCA calcode flag
chi R radians Position angle of the X feed relative to the sky. This is the
or chi(nants) sum of the parallactic angle and the evector variable.

If only one value is present, all antennas are
assumed to have identical values.

coord(2) D nanosec uv baseline coordinates
coord is also known as preamble(1:2)

corbit R - Number of correlator bits (Hat Ck)
corbw(2) R MHz Correlator bandwidth setting (Hat Ck)

Must take the values
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1.25, 2.5, 5.0, 10.0, 20.0, 40.0 & 80.0 MHz.
corfin(4) R MHz Correlator LO setting before Doppler tracking (Hat Ck)

This is the LO frequency at zero telescope velocity
Must be in the range 80 to 550 MHz.

cormode I - Correlator mode (Hat Ck). Values are:
1 : 1 window /sideband by 256 channels
2 : 2 windows/sideband by 128 channels
3 : 4 windows/sideband by 64 channels, single sideband
4 : 4 windows/sideband by 64 channels, double sideband

coropt I - Correlator option (Hat Ck)
0 means cross-correlation
1 means auto-correlation
Same as the obstype item?

corr(nchan) J or - Correlation data
R corr is really a complex quantity, but the

data stream variable can be stored otherwise
for efficiency.

cortaper R - On-line correlation taper (Hat Ck)
This is the value at the edge of the window
The value is from 0-1.

ddec R radians Offset in declination from dec in epoch coordinates.
The actual observed DEC is calculated as dec + ddec.

dec R or radians Declination of the phase center/tangent point. See epoch for coordinate
D definition.

delay(nants) D nanosec delay setting at beginning of integration (Hat Ck)
delay0(nants) R nanosec delay offset for antennas (Hat Ck)
deldec R or radians Declination of the delay tracking center. See epoch for coordinate

D definition.
delra R or radians Right ascension of the delay tracking center. See epoch

D for coordinate definition.
dewpoint R centigr. Dew point at weather station (Hat Ck)
dra R radians Offset in right ascension from ra in epoch coords.

The actual observed RA is calculated as
ra + dra/cos(dec).

epoch R years A badly named variable – this defines the mean equinox and
equator for the equatorial coordinates ra, dec,
dra and ddec. The epoch of the coordinates is
actually the observing time. Values less than 1984.0 are
Besselian with coordinates in the FK4 system. Values greater
than 1984.0 are Julian with coordinates in the FK5 system.

evector R radians Position angle of the X feed, to the local vertical.
or evector(nants) If only one value is present, all antennas are

assumed to be identical.
focus(nants) R volts Focus setting (Hat Ck)
freq D GHz Rest frequency of the primary line
freqif D GHz ? (Hat Ck only?)
inttime R seconds Integration time
ischan(nspect) I - Starting channel of spectral window
ivalued(nants) I ? Delay step (Hat Ck)

Used in an attempt to calibrate amp and phase vs. delay.
jyperk R Jy/K The efficiency Jy/K,

calculated during calibration
latitud D radians Geodetic latitude of the observatory.
lo1 D GHz First local oscillator (Hat Ck)

lo1 is in the range 70 GHz - 115 GHz.
lo2 D GHz Second local oscillator (Hat Ck)
longitu D radians Longitude of the observatory.
lst D radians Local apparent sidereal time.
mount I - The type of antenna mounts.
or mount(nants) If only one value is given, all antennas

are assumed to be the same. Possible values are:
0: Alt-az mount.
1: Equatorial mount.
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2: X-Y.
3: orbiting.
4: bizarre.

name A - ATCA raw RPFITS file name.
nants I - The number of antennas

Following variables use a dimension of nants:
antpos(nants, 3)
focus(nants)
phaselo[1-2](nants)
phasem1(nants)
systemp(nants, nspect)
wsystemp(nants, nwide)
temp(nants, ntemp)
tpower(nants, ntpower)
axisrms(2,nants)
The antennas are always numbered starting at 1.

nbin I - Total number of pulsar bins.
nchan I - The total number of individual frequency channels

The following variables have the dimension of nchan:
corr(nchan)

npol I - The number of simultaneous polarisations
nschan(nspect) I - Number of channels in spectral window
nspect I Number of spectral windows

Following variables use a dimension of nspect:
ischan(nspect)
nschan(nspect)
restfreq(nspect)
sdf(nspect)
sfreq(nspect)
systemp(nants, nspect)

ntemp I - Number of antenna thermisters
Following variables use a dimension of ntemp:
temp(nants, ntemp)

ntpower I - Number of total power measurements
The following variable depends on ntpower:
tpower(nants,ntpower)
ntpower is currently 1, could be more later.

nwide I - Number of wideband channels
Variables which depend on nwide are:
wfreq(nwide)
wwidth(nwide)
wcorr(nwide)
wsystemp(nants,nwide)

obsdec D radians Apparent declination of the phase centre/tangent point
at time of observation.

observer(*) A - The name of the observer
obsra D radians Apparent right ascension of the phase centre/tangent point

at time of observation.
on I - Either 0 or 1, for on and off pointing,

for auto-correlation data.
operator(*) A - The name of the current operator
pbfwhm R arcsec (Deprecated) Primary Beam at Full Width Half Maximum

For Hat Ck, it is approximately 11040.0/lo1.
pbtype A - Primary beam type to be used in imaging.
phaselo1(nants) R radians Antenna phase offset (Hat Ck)
phaselo2(nants) R radians Second LO phase offset (Hat Ck)
phasem1(nants) R radians IF cable phase (Hat Ck)
plangle R degrees Planet angle
plmaj R arcsec Planet major axis (note units)
plmin R arcsec Planet minor axis
pltb R Kelvin Planet brightness
pntdec R or radians Declination of the pointing center. See epoch for coordinate

D definition.
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pntra R or radians Right ascension of the pointing center. See epoch

D for coordinate definition.
pol I - Polarization type of the correlation data. Values

follow the AIPS/FITS convention, viz:
1: Stokes I
2: Stokes Q
3: Stokes U
4: Stokes V
-1: Circular RR
-2: Circular LL
-3: Circular RL
-4: Circular LR
-5: Linear XX
-6: Linear YY
-7: Linear XY
-8: Linear YX

precipmm R mm Mm of precipitable water vapour in the atmosphere.
pressmb R millibar atmospheric pressure.
project(*) A - The name of the current project
ra R or radians Right ascension of the phase center/tangent point. See epoch for

D the definition of the coordinate system.
rain R mm The current amount of water in the rain guage. The rain guage is emptied at 9:00 AEST (A
refpnt(2,nants) R arcsec Reference pointing offsets.

refpnt(1,?) is azimuth offset,
refpnt(2,?) is the elevation offset.

relhumid R % Relative Humidity at observatory
restfreq(nspect) D GHz Rest frequency for each spectral window.

This may be zero for continuum observations.
sctype A - Scan type
sdf(nspect) D GHz Change in frequency per channel
sfreq(nspect) D GHz Sky frequency of first channel in window
smonrms R µm ATCA seeing monitor rms value
source(*) A - The name of the source
systemp R Kelvin Antenna system temperatures
or systemp(nants)
or systemp(nants,nspect)

telescop(*) A - The telescope name. Some standard values are:
’ATCA’

’HATCREEK’

’VLA’

’WSRT’

temp R centigr. Antenna thermistor temperatures (Hat Ck)
(nants, ntemp)

themt(nants) R Kelvin temperature of the hemt amplifier (Hat Ck)
tif2(nants) R Kelvin temperature of IF amplifier (Hat Ck)
time D days The time (nominally UT1) stored as a Julian date.

For example, noon on Jan 1, 1980 is 2,444,240.0!
time is also known as preamble(3)

tpower R volts Total power measurements (Hat Ck)
(nants, ntpower)

tscale R - Optional correlation scale factor
Used only when corr is stored as J (16 bits).

tsis(nants) R Kelvin temperature of the SIS mixers (Hat Ck)
ut D radians The time since midnight Universal time (nominally UT1).
veldop R km s−1 The sum of the radial velocity of the observatory

(in the direction of the source, with respect to the rest
frame) and the nominal systemic radial velocity of the source.

veltype(*) A - Velocity rest frame. Possible values for veltype are:
VELO-LSR: rest frame is the LSR
VELO-HEL: rest frame is the barycentre
VELO-OBS: rest frame is the observatory
FELO-LSR: rest frame is the LSR (deprecated)
FELO-HEL: rest frame is the barycentre (deprecated)
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version(*) A - The current hardware/software version
Current options: oldhat, newhat

vsource R km s−1 Nominal radial systemic velocity of source.
Positive velocity is away from observer.

wcorr(nwide) C - Wideband correlations. The current ordering is:
wcorr(1:2) are the digital LSB and USB.
wcorr(3:4) are the analog LSB and USB.

wfreq(nwide) R GHz Wideband correlation average frequencies
wind R km/h Wind speed in km/h
winddir R deg Wind direction

(note: originally encoded as ‘N’, ‘SE’, ‘W’, etc.)
windmph R mph Wind speed - in imperial units!
wsystemp R K System temperature for wide channels.
or wsystemp(nants)
or wsystemp(nants,nwide)

wwidth(nwide) R GHz Wideband correlation bandwidths
xsampler R percent X sampler statistics (ATCA).
(3,nants,nspect)

xtsys(nants,nspect) R Kelvin System temperature of the X feed (ATCA).
xyamp(nants,nspect) R Jy On-line XY amplitude measurements (ATCA).
xyphase R radians On-line XY phase measurements (ATCA).
(nants,nspect)

ysampler R percent Y sampler statistics (ATCA).
(3,nants,nspect)

ytsys(nants,nspect) R Kelvin System temperature of the Y feed (ATCA).
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