
i

 Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA
RMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CA
ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C
iriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA M
MA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CAR

ad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miri
A Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARM

CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad CARMA Miriad C

Miriad
Multichannel Image Reconstruction,

Image Analysis and Display

CARMA Cookbook

Peter Teuben

22 Jul 2011 - 09:42

See http://carma.astro.umd.edu/miriad

ii

Contents

Table of Contents i

1 Introduction 1-1

1.1 Users Guides . 1-1

1.1.1 Miriad Users Guide . 1-1

1.1.2 SMA Users Guide . 1-1

1.1.3 CARMA cookbook . 1-2

1.2 Future . 1-2

1.3 STYLE . 1-2

1.4 Links . 1-2

1.5 Revision History . 1-3

2 A Simple Example 2-1

2.1 CARMA Continuum data . 2-1

2.1.1 CARMA test data and shell scripts . 2-3

2.2 A little more on MIRIAD . 2-7

3 Description of necessary steps 3-8

4 Common problems: how to spot them and what to do about it 4-9

5 Example scripts 5-10

6 Work Flow 6-1

6.1 CARMA Data Retrieval . 6-1

6.1.1 Not at CARMA . 6-1

6.1.2 At CARMA . 6-2

6.2 Organizing your CARMA Data Tree . 6-2

6.3 Quality Check . 6-3

6.4 Data Inspection . 6-3

iii

iv CONTENTS

6.4.1 listobs . 6-3

6.4.2 uvindex . 6-5

6.4.3 uvlist . 6-6

6.4.4 uvflag - initial check of flagged data . 6-6

6.4.5 Visual: uvplt, uvspec, varplt, uvimage, closure . 6-7

6.5 Initial Data Correction . 6-7

6.5.1 Archive based corrections . 6-7

6.5.2 Baseline correction . 6-9

6.5.3 Rest Frequency (bugzilla 409) . 6-9

6.5.4 Linelength Correction . 6-10

6.5.5 Other UV variables . 6-10

6.5.6 Data Flagging and Editing . 6-10

6.5.7 Flagging Birdies and End Channels . 6-11

6.5.8 Flagging using tvflag and pgflag . 6-11

6.5.9 Flagging based system temperatures . 6-12

6.5.10 Flagging based on tracking errors . 6-12

6.6 Calibration . 6-12

6.6.1 Passband Calibration . 6-12

6.6.2 Simple single calibrator . 6-13

6.6.3 Autocorrelation . 6-13

6.6.4 Noise Source Passband Calibration . 6-14

6.6.5 Phase Transfer . 6-15

6.6.6 PACS calibration . 6-16

6.6.7 Absolute Flux Calibration . 6-20

6.6.8 Absolute Flux Calibration: MARS . 6-20

6.7 Mapping and Deconvolution . 6-21

6.7.1 Mosaicing . 6-21

6.7.2 Weights in mapping . 6-22

6.7.3 Channel averaging in invert . 6-22

6.8 Tips and Tricks . 6-23

7 Recipes 7-1

7.1 Calibration . 7-1

7.1.1 Calibration-1 . 7-1

7.1.2 Calibration-2 . 7-2

CONTENTS v

7.1.3 Calibration-3 . 7-4

7.1.4 gmake/gfiddle . 7-4

7.2 Bandpass calibration . 7-5

7.3 Flux Calibration . 7-10

7.3.1 Bootstrap Flux Calibration . 7-10

7.4 Mosaiced Mapping and Deconvolution . 7-12

7.5 Simple Reduction . 7-13

7.5.1 Simple Reduction - I . 7-13

7.5.2 Simple Reduction - II . 7-16

7.5.3 Hybrid Mode Calibration - III . 7-19

7.5.4 Calibration - IV . 7-27

8 Future -1

A Installing Miriad A-1

A.1 Setting up your account . A-1

A.2 Site dependent setup . A-1

A.2.1 OVRO . A-1

A.2.2 Berkeley . A-2

A.2.3 Caltech . A-2

A.2.4 Illinois . A-2

A.2.5 Maryland . A-2

A.3 Installation . A-2

A.3.1 Source Installation . A-3

A.3.2 Binary Installation . A-3

A.3.3 Keeping your version up to date . A-3

B Miriad cheatsheet B-1

B.1 Reminders . B-1

B.2 Miriad DATASETS . B-2

B.2.1 Visibility data . B-2

B.2.2 Image data . B-2

B.3 Common Miriad Keywords . B-2

B.3.1 vis= . B-3

B.3.2 in= . B-3

B.3.3 device= . B-3

vi CONTENTS

B.3.4 select= . B-3

B.3.5 line= . B-3

B.3.6 region= . B-4

B.3.7 options= . B-4

B.3.8 vis=, in= . B-4

B.4 Gridding time/frequency/Keeping track of time in MIRIAD B-4

B.4.1 time: uvgen, CARMA, uvaver . B-5

B.4.2 frequency: uvaver . B-5

B.4.3 position: invert . B-5

B.5 Programming in MIRIAD . B-5

B.5.1 Old-style build . B-5

B.5.2 New-Style build . B-6

C Scripting C-1

C.1 Interactive shells . C-1

C.2 Programmable shells . C-1

C.3 Example: mosaic.py . C-1

D UV Variables D-1

D.1 UV Dataset . D-1

D.2 Telescope specific notes . D-7

D.2.1 ATCA . D-7

D.2.2 CARMA . D-8

D.2.3 SZA . D-8

D.2.4 SMA . D-8

D.2.5 BIMA/Hat Creek . D-8

D.3 Examples . D-9

E CARMA Data E-1

E.1 Oddities . E-1

E.2 Data Versions . E-1

E.3 version . E-1

E.4 Historic Data Correction . E-2

E.4.1 Axis offset correction . E-2

E.4.2 jyperk (bugzilla 339) . E-3

E.4.3 Flagging based on tracking errors (bugzilla 376) E-3

CONTENTS vii

E.4.4 Incorrect source name in miriad file (bugzilla 564) E-3

E.4.5 Amplitude Decorrelation . E-3

E.4.6 Baseline Correction . E-4

F Formularium F-1

F.1 Interferometry . F-1

F.1.1 Antennae positions . F-1

F.2 Constants . F-1

F.3 Calibration . F-2

F.3.1 Line Length Calibration . F-2

F.3.2 Passband Calibration . F-2

F.3.3 Gain Calibration . F-2

F.3.4 Buddy Phase Calibration . F-2

F.3.5 Interpolation . F-2

F.4 Doppler Shift . I-3

Index I-3

viii CONTENTS

Chapter 1

Introduction

This manual, and other relevant information, is also available on the MIRIAD home page

http://carma.astro.umd.edu/miriad

and serves as a cookbook for reduction and analysis of CARMA data using the MIRIAD package. It is
assumed that the reader has some familiarity with the underlying Unix operating system (Linux, Solaris,
Darwin, ...) and MIRIAD itself. A wiki page

http://carma.astro.umd.edu/wiki/index.php/CARMA_Cookbook

maintains links and other useful information for the cookbook. You will be able to download example
scripts from there as well.

1.1 Users Guides

All general information, and many procedures also relevant for CARMA, can already be obtained from
several existing Users Guides:

1.1.1 Miriad Users Guide

Ideally the cookbook assumes familiarity with the MIRIAD Users Guide, in particular Chapters 2 (the
miriad shell), 3 (plotting and the device= keyword), 4 (what MIRIAD datasets really are). Chapter 5
on visibility data is in particular important, it deals with the different types of calibration tables, and
a description of the powerful select= keyword. Chapter 6 on image data is much shorter but also
important to read. Chapter 10 on flagging is also important. Since this particular Users Guide was most
recently overhauled by the ATNF team, some of the procedures described in there are somewhat ATNF
specific. Hence our CARMA cookbook.

1.1.2 SMA Users Guide

The recently written SMA Users Guide contains lots of useful information as well, in a cookbook style,
which can be complementary to the current CARMA cookbook and the (ATNF) MIRIAD Users Guide.

1-1

1-2 CHAPTER 1. INTRODUCTION

1.1.3 CARMA cookbook

Procedures specific to CARMA will be addressed in this cookbook. Most notably, the UV variables
(Appendix D) in this version of the manual should be considered the appropriate ones for CARMA and
other versions may show missing or conflicting information for the moment.

1.2 Future

This cookbook is currently a live document, and you can expect changes to come with the new correlator
and procedures such as PACS coming online in the coming year. Also be sure to be subscribed to the
relevant mailing lists: miriad-dev for Miriad development issues, carma users for CARMA observatory1.
Miriad data versions (the filler changes from time to time). Developments around flagging and blanking,
baseline and band dependent integration times, polarization etc.. Our bugzilla has a module for Miriad
as well, though again, this is probably only useful for developers

1.3 STYLE

There are two possible styles for code examples. One is WYSIWYG as you type it on the Unix command
line and in shell scripts:

% uvlist vis=cx012.SS433.2006sep07.1.miriad options=spectra

and the other employs the miriad shell, an AIPS like program in which you set variables and run the
task, one by one. The output also shows all program parameters, leaving them blank if the default is
used. These examples are not cut-and-paste friendly, but perhaps read a little easier.

Task: uvlist

vis = cx012.SS433.2006sep07.1.miriad

options = spectra

select =

line =

scale =

recnum =

log =

Within the MIRIAD shell, the parameters are global, when you switch a taskname, the same vis= would
appear in this list if the new task also has this parameter. This concept doesn’t quite apply to the Unix
command line.

1.4 Links

• MIRIAD main webpage: http://carma.astro.umd.edu/miriad

• Wiki page for Miriad and CARMA Cookbook: http://carma.astro.umd.edu/wiki/index.php/Miriad

• Miriad bugzilla (part of CARMA bugzilla) at http://www.mmarray.org/bugzilla

• Google mailing list for MIRIAD users, at http://groups.google.com/group/miriad?hl=en

1subscription details on web....

1.5. REVISION HISTORY 1-3

1.5 Revision History

• 20-apr-2007: first draft

• 15-feb-2008: Draft for version 2 of this document

• 21-jun-2008: Summerschool 2008 version

• 12-jul-2009: Largely Revised Summerschool 2009 version

Acknowledgements

Stuart Vogel, Stephen White, Jin Koda, Joanna Brown etc.. And the fine crew of the first Miriad “Party”
where much of this material was first written. Not to mention all those convincing me to keep adding
more.

1-4 CHAPTER 1. INTRODUCTION

Chapter 2

A Simple Example

Before we bury ourselves into the details of a more typical CARMA data reduction, let us look at a
very simple continuum observation and go over the essentials from calibrating visibility data to making
astronomical images. While this is also a silent introduction to MIRIAD, we will cover more what
MIRIAD is all about in later chapters.

2.1 CARMA Continuum data

The dataset ftp://ftp.astro.umd.edu/pub/carma/data/SgrA.mir.tar.gz is used for this example1.

The commands you see below are all Unix shell commands, most of these are in fact MIRIAD programs.
This is one of at least three ways to reduce your data using MIRIAD. It is the most compact form and
probably the one most people will be familiar with.

Later we will explain the ways you get your data from the archive, but for now, lets assume you have
the tar file in your current (ideally clean) working directory, you first untar this (usually compressed) file
using the Unix tar command:

tar -zxf SgrA.mir.tar.gz

and you will see your observation is a directory (a MIRIAD dataset) with files in them. You should never
manipulate these file directly, unless you really know what you are doing. MIRIAD program generally
deal with these files.

Probably the next thing you do is make an observing summary log where you can check the names,
frequency setup, LST ranges of the various sources in your observation etc.. The MIRIAD task “listobs”
is used for this:

listobs vis=SgrA.mir log=listobs.log

Note that unlike the typical options in Unix commands, MIRIAD commands use a “keyword=value”
command line syntax, but are otherwise implemented as Unix commands. In fact, they are simple
Fortran programs that call libraries, and some astronomers are even known to make small modifications
for themselves and recompile these programs.

Looking at the listobs.log file, and here is the example from SgrA:

1windows 1 and 4 from c0319.1D 86GCRing.5.mir, observed on March 20, 2009 by M. Pound and F. Yusef-Zadeh, in D
array

2-1

2-2 CHAPTER 2. A SIMPLE EXAMPLE

Observed Sources Coordinates and Corr Freqs

Source Purpose RA Decl Vlsr Corfs in MHz

NOISE B 20 32 45.53 40 39 36.63 0.00E+00 0.0

MWC349 BF 20 32 45.53 40 39 36.63 0.00E+00 0.0

3C345 B 16 42 58.81 39 48 37.00 0.00E+00 0.0

1733-130 G 17 33 02.71 -13 04 49.54 0.00E+00 0.0

GCRING S 17 45 40.03 -29 00 27.87 0.00E+00 0.0

the dataset has several sources: a flux calibrator (F), a phase (gain) calibrator (G), a passband calibrator
(B) and the science source (S) of interest. Sometimes some of the calibrators are actually the same.
In particular, the phase calibrator will normally be observed alternatingly with your source every 10-20
mins. The flux and/or passband calibrator are normally stronger and observed for a short time (5-15
mins) before or after your observation. Sometimes a planet, if available, will be observed as well, for
a more reliable flux calibration. In this simple example we will just use a passband and phase (gain)
calibrator, 3C345 and 1733-130 resp.

For convenience, we first extract all the cross-correlations of all astronomical sources from this dataset,
leaving out the NOISE source and the auto-correllations (more about those later). This is done with the
powerful uvcat command:

uvcat vis=SgrA.mir select=’-source(NOISE),-auto’ out=all.vis

Now we are ready for a series of calibrations that can be applied to all the data. Line length and baseline
calibration are the two we show:

First we apply a line length calibration. This corrects for any instrumental phase drifts that are due to
changes in the length of the fibers, which are notably temperature sensitive and will expand and contract
during the day, and especially can be abrubt during sunrise and sunset. Maybe give example with varplt

how to look at these line length phases?

linecal vis=all.vis

uvcat vis=all.vis out=all_1.vis

Next we can apply a baseline correction. Often during the course of an array configuration, better base-
lines become available, and they should be retro-actively applied to data from that array configuration.
An option in the general purpose uvedit program accomplishes this, by feeding is a new antenna position
file:

uvedit vis=all_1.vis out=all_2.vis apfile=$MIRCAT/baselines/carma/antpos.090331

Here you will need to find out which antpos file is the appropriate one for your observation. Check the
output of listobs with available antpos files.

There are now two basic approaches to calibration. We either continue on the scheme described before:
selecting a calibration type, and apply this to all the data, and continue this pipeline until ready to map.
Although very elegant, some of the more complex calibration schemes are not easily implemented this
way. Nonetheless, let us see how this scheme continues.

First we use a short 15 minute observation of a bright quasar (3C345 in this case) to calibrate the data
such that the passband will then have zero phase and constant amplitude. The task mfcal does this by
computing an antenna based frequency dependant solution, which we then apply to the whole observation.

mfcal vis=all_2.vis refant=2 interval=999 select="source(3C345)"

uvcat vis=all_2.vis out=all_3.vis options=nocal

2.1. CARMA CONTINUUM DATA 2-3

We now calculate the gains as a function of time using the selfcal program. This program can also
lookup the last reported flux of the calibrator and thus give you properly calibrated fluxes in your source
later on. After selfcal, just as before, we apply the gains and now obtaining a fully calibrated dataset!

mselfcal vis=all_3.vis refant=2 select="source(1733-130)" options=amp,apriori,noscale interval=5

puthd in=all_3.vis/interval value=0.1

uvcat vis=all_3.vis out=all_4.vis

After calibration, and before applying the gains, you will notice we have cheated and widened the validity
interval (in units of days) to something big enough to safely interpolate into the source data. Use the
output of listobs and your own judgement if this is a valid assumption.

In this particular example we have calibrated both amplitude and phase, another option would be to only
calibrate the phases, and use a planet for amplitude scaling. This will be covered in later chapters.

Now we are ready for mapping and deconvolution. One of the standards tests is to map the calibrator
and compare it to the beam:

invert vis=all_4.vis map=map0 beam=beam0 imsize=128 line=chan,1,1,2,2 select="source(1733-130)"

clean map=map0 beam=beam0 out=model0

restor map=map0 beam=beam0 model=model0 out=clean0

Since CARMA is a heterogeous array, with different primary beams, we apply a mosaicing option to the
mapping program, even if there is only one single pointing in the observation. Except when you want
to detect or map a very small field of view, or a point source, this is essential. The current example
observation of SgrA has 7 pointings, and because the source is extended, mosaicing is essential here:

invert vis=all_4.vis map=map1 beam=beam1 line=wide,1,1,2,2 "select=source($sname)" options=mosaic imsize=129

mossdi map=map1 beam=beam1 out=model1

restor map=map1 beam=beam1 model=model1 out=clean1

A last note before you might get your fingers wet: these commands are obviously tedious to type, and
prone to typos. Of course in real life we use scripts (e.g. C-shell or python scripts), in such a way that
you repeat your data reduction script, finetuning the various calibration schemes you apply.

2.1.1 CARMA test data and shell scripts

For this chapter there are 3 shell scripts available for study that with their comments go into more depth
and show plotting example of a simple continuum observation. You will always be able to find these
scripts, and their accompanying data, in ftp://ftp.astro.umd.edu/pub/carma/data

1. simple0.csh: A very short 1 minute observation called “fringetest”, used to show how the various
calibration schemes can even dillute the signal of a strong quasar.

2. simple1a.csh: a simple calibration pipeline, as we discussed before. The advantage of keeping all
sources together in a single file is fewer files (and thus I/O, saving time) is needed and it is easier
to check how well the calibration worked on any source in your track.

1: #! /bin/csh -f

2: #

3: # extracted from c0319.1D_86GCRing.5.mir, originally observed at CARMA on 20 March 2009.

4: # PI: Marc Pound and Farhad Yusef-Zadeh.

5: #

2-4 CHAPTER 2. A SIMPLE EXAMPLE

6: #

7: # this script works mostly with one visibility file, and uses select= to work on selected data

8: #

9: # sources:

10: # --------

11: # MWC349 flux (ignored here)

12: # 3C345 passband

13: # 1733-130 phase

14: # GCRING source

15:

16:

17: # administration: getting the data

18:

19: set tar=../SgrA.mir.tar.gz

20: tar -zxf $tar

21: # set vis=$tar:t:r:r

22: set vis=SgrA.mir

23:

24: # set an antpos file for baseline correction: two are available 090225 and 090331

25: set antpos=$MIRCAT/baselines/carma/antpos.090331

26:

27: # source names (we use the PURPOSE code from listobs: S, B, G)

28: set sname=GCRING

29: set bname=3C345

30: set gname=1733-130

31:

32: # reference ants

33: set bref=2

34: set pref=2

35:

36: # work can start ---

37:

38: # get a listing of what happened

39: listobs vis=$vis log=listobs.log

40:

41: # select out only the useful astronomical data

42: rm -rf all.vis

43: uvcat vis=$vis select=’-source(NOISE),-auto’ out=all.vis

44:

45: # notice ant 1 has some issue

46: # smauvplt vis=all.vis device=/xs axis=time,phase options=nocal,nopass

47: uvflag vis=all.vis flagval=flag select="ant(1)"

48:

49: # baseline calibration

50: rm -rf all_1.vis

51: uvedit vis=all.vis out=all_1.vis apfile=$antpos

52:

53: # linelength calibration

54: rm -rf all_2.vis

55: linecal vis=all_1.vis

56: #gpplt vis=all_1.vis yaxis=phase nxy=5,3 device=/xs options=wrap

57: uvcat vis=all_1.vis out=all_2.vis

58:

59: # smauvplt vis=all_2.vis device=/xs axis=time,phase options=nocal,nopass

60:

61: # bandpass calibration

62: rm -rf all_3.vis

63: mfcal vis=all_2.vis refant=$bref select="source($bname)" interval=999

64: #gpplt vis=all_2.vis yaxis=phase nxy=5,3 device=/xs options=bandpass

65: #gpplt vis=all_2.vis yaxis=amp nxy=5,3 device=/xs options=bandpass

66: uvcat vis=all_2.vis out=all_3.vis options=nocal

67:

68:

69: # gain calibration, looking quite nice now

70: rm -rf all_4.vis

71: mselfcal vis=all_3.vis refant=$pref select="source($gname)" options=amp,apriori,noscale interval=5

72:

73: #gpplt vis=all_3.vis yaxis=phase nxy=5,3 device=/xs options=gains

74: #gpplt vis=all_3.vis yaxis=amp nxy=5,3 device=/xs options=gains

75:

2.1. CARMA CONTINUUM DATA 2-5

76: puthd in=all_3.vis/interval value=0.1

77: uvcat vis=all_3.vis out=all_4.vis

78:

79: # should check flagged values in all_3 and all_4 and they should be the same

80: # if the new interval is long enough to catch all inter- and extra-polations

81:

82: # map the calibrator

83:

84: rm -rf beam0 map0 model0 clean0

85: invert vis=all_4.vis map=map0 beam=beam0 imsize=128 line=wide,1,1,2,2 select="source($gname)"

86: clean map=map0 beam=beam0 out=model0

87: restor map=map0 beam=beam0 model=model0 out=clean0

88:

89: # map the source

90:

91: rm -rf beam1 map1 model1 clean1

92: invert vis=all_4.vis map=map1 beam=beam1 line=wide,1,1,2,2 "select=source($sname)" options=mosaic,double,systemp imsize=129

93: mossdi map=map1 beam=beam1 out=model1

94: restor map=map1 beam=beam1 model=model1 out=clean1

3. simple1b.csh: breaking it up in different source files. This is the way the more complex calibration
routines work. You will wind up with a lot more files this way.

1: #! /bin/csh -f

2: #

3: # extracted from c0319.1D_86GCRing.5.mir, originally observed at CARMA on 20 March 2009.

4: # PI: Marc Pound and Farhad Yusef-Zadeh.

5: #

6: #

7: # this script works by copying over gain tables and applying them, not the simplest

8: # of ways, but flexible in terms of the more complex calibration schemes that can occur.

9: #

10: # sources:

11: # --------

12: # MWC349 flux (ignored here)

13: # 3C345 passband

14: # 1733-130 phase

15: # GCRING source

16:

17:

18: # administration: getting the data

19:

20: set tar=../SgrA.mir.tar.gz

21: tar -zxf $tar

22: # set vis=$tar:t:r:r

23: set vis=SgrA.mir

24:

25: # set an antpos file for baseline correction: two are available 090225 and 090331

26: set antpos=$MIRCAT/baselines/carma/antpos.090331

27:

28: # source names (we use the PURPOSE code from listobs: S, B, G)

29: set sname=GCRING

30: set bname=3C345

31: set gname=1733-130

32:

33: # reference ants

34: set bref=2

35: set pref=2

36:

37: # work can start ---

38:

39: # get a listing of what happened

40: listobs vis=$vis log=listobs.log

41:

42: # select out only the useful astronomical data

43: rm -rf all.vis

44: uvcat vis=$vis select=’-source(NOISE),-auto’ out=all.vis

45:

2-6 CHAPTER 2. A SIMPLE EXAMPLE

46: # notice ant 1 has some issue

47: # smauvplt vis=all.vis device=/xs axis=time,phase options=nocal,nopass

48: uvflag vis=all.vis flagval=flag select="ant(1)"

49:

50: # baseline calibration

51: rm -rf all_1.vis

52: uvedit vis=all.vis out=all_1.vis apfile=$antpos

53:

54: # linelength calibration

55: rm -rf all_2.vis

56: linecal vis=all_1.vis

57: #gpplt vis=all_1.vis yaxis=phase nxy=5,3 device=/xs options=wrap

58: uvcat vis=all_1.vis out=all_2.vis

59:

60: # now we split the full source (B,G,S) in pieces

61: rm -rf b_1.vis g_1.vis s_1.vis

62: uvcat vis=all_2.vis out=b_1.vis select="source($bname)"

63: uvcat vis=all_2.vis out=g_1.vis select="source($gname)"

64: uvcat vis=all_2.vis out=s_1.vis select="source($sname)"

65:

66: # bandpass calibration

67: mfcal vis=b_1.vis refant=$bref interval=999

68: #gpplt vis=b_1.vis yaxis=phase nxy=5,3 device=/xs options=bandpass

69: #gpplt vis=b_1.vis yaxis=amp nxy=5,3 device=/xs options=bandpass

70:

71: # and copy gains into G and S, and apply them

72: rm -rf g_2.vis

73: gpcopy vis=b_1.vis out=g_1.vis options=nocal,nopol

74: uvcat vis=g_1.vis out=g_2.vis

75:

76: rm -rf s_2.vis

77: gpcopy vis=b_1.vis out=s_1.vis options=nocal,nopol

78: uvcat vis=s_1.vis out=s_2.vis

79:

80:

81: # gain calibration, looking quite nice now

82: mselfcal vis=g_2.vis refant=$pref options=amp,apriori,noscale interval=5

83:

84: #gpplt vis=g_2.vis yaxis=phase nxy=5,3 device=/xs options=gains

85: #gpplt vis=g_2.vis yaxis=amp nxy=5,3 device=/xs options=gains

86:

87: puthd in=g_2.vis/interval value=0.1

88:

89: rm -rf s_3.vis

90: gpcopy vis=g_2.vis out=s_2.vis options=nopass,nopol

91: uvcat vis=s_2.vis out=s_3.vis

92:

93: # should check flagged values in s_2 and s_3 and they should be the same

94: # if the new interval is long enough to catch all inter- and extra-polations

95:

96: # map the calibrator

97:

98: rm -rf beam0 map0 model0 clean0

99: invert vis=g_2.vis map=map0 beam=beam0 imsize=128 line=wide,1,1,2,2

100: clean map=map0 beam=beam0 out=model0

101: restor map=map0 beam=beam0 model=model0 out=clean0

102:

103: # map the source

104:

105: rm -rf beam1 map1 model1 clean1

106: invert vis=s_3.vis map=map1 beam=beam1 line=wide,1,1,2,2 options=mosaic,double,systemp imsize=129

107: mossdi map=map1 beam=beam1 out=model1

108: restor map=map1 beam=beam1 model=model1 out=clean1

2.2. A LITTLE MORE ON MIRIAD 2-7

Figure 2.1: Flow diagram simple1a

2.2 A little more on MIRIAD

As you have seen above, MIRIAD programs are just Unix programs that you can run, normally from
an interactive shell, or through a shell script. The other thing to re-emphasize is that most MIRIAD
datasets are implemented as a set of items (usually files) organized in a directory. You refer to a MIRIAD
dataset by its directory name, you can use the tools on your computer to copy, rename, remove, archive
etc. them.

If you need help on a MIRIAD command, there are several ways. For example for uvcat you would type:

mirhelp uvcat

uvcat -k

uvcat -kw

Appendix B contains another quick summary of MIRIAD and some of the options you will frequently
use. Appendix E lists the peculiarities of the MIRIAD data dialect that the CARMA telescopes write,
which can be useful for those familiar with MIRIAD data from other telescopes.

Chapter 3

Description of necessary steps

a) Overview

- data inspection

- flag bad data (here and throughout data reduction)

- baseline corrections

- linecal

- passband calibration

- flux calibration

- gain calibration

- making images

b) Details of individual steps

- show plots!

3-8

Chapter 4

Common problems: how to spot
them and what to do about it

a) phase jumps

b) poor system temperatures

c) lack of ”fringes”

d) bad correlator band

e) missing data for antenna

f) bad channels

g) bad pointing/tracking

...

4-9

Chapter 5

Example scripts

a) ”continuum”

b) continuum + narrow spectral line

c) flux calibration

d) mosaic

e) hybrid mode

5-10

Chapter 6

Work Flow

This Chapter guides you through the following basic steps of reducing your CARMA data. Each step
has a seperate Section devoted to it.

1. Get your data from the CARMA Data Archive

2. Organize your working directory tree

3. Inspect data logs and quality

4. Correct data for obvious errors (flagging, baselines, etc.)

5. Calibrate phases and amplitudes

6. Mapping and Deconvolution

The PI will normally have received an email with a “CARMA track finished” subject line. It will have
attached the observing script and logfile, and it will remind you how to download the data from the
CARMA data archive. This Chapter guides you through the steps of getting your data, inspecting the
data quality, and calibration of the data. Some comments on mapping and Deconvolution (standard
procedures in Miriad and covered in depth elsewhere) are in place as well.

6.1 CARMA Data Retrieval

CARMA visibility data are normally multi-source MIRIAD datasets, where all data from a single track
(a typical “8” hour observation) are in a single Miriad dataset.

Note that you will use the carmaweb username and need to get a password to gain access to CARMA
data! The website http://cedarflat.mmarray.org/observing gives instructions on how to get this
password.

6.1.1 Not at CARMA

The CARMA data archive at http://carma-server.ncsa.uiuc.edu:8181/ provides a web interface to
retrieve your data. Once you have located your data, there are two primary ways to download the data
to your personal computer. The first is through a Java Web Start (jsp) application. Once launched
(you may have to teach your browser where javaws1 is located) and before the list of datasets has been

1javaws is part of the Java Development Kit (JDK) and if not present, you may have to install it. javaws should be in
the installation bin directory

6-1

6-2 CHAPTER 6. WORK FLOW

displayed in DaRT, click on the Download button in that java application to start the transfer. The second
method would be to right click on the dataset names and use your browser to download the data. Notice
that these file are gzip compressed tar files, and need to be un-tarred to become a real MIRIAD dataset
(i.e. a directory):

% tar zxf cx012.SS433.2006sep07.1.miriad.tar.gz

this creates a directory cx012.SS433.2006sep07.1.miriad which we refer to as a miriad dataset. The
MIRIAD program itemize lists the items in this dataset. It is also a good sanity check if your dataset
appears intact.

% itemize in=cx012.SS433.2006sep07.1.miriad

Itemize: Version 22-jun-02

obstype = crosscorrelation

nwcorr = 573768

ncorr = 8606520

vislen = 48204056

flags (integer data, 277630 elements)

visdata (binary data, 48204052 elements)

wflags (integer data, 18509 elements)

vartable (text data, 632 elements)

history (text data, 1095356 elements)

The drawback of this download scheme is that you initially need about twice the diskspace. You can
also use the streaming capabilities of programs like wget or curl to transfer and un-tar on the fly, if you
know how to construct the URL from the dataset names you saw on that Data Archive page:

% set base=http://carma-server.ncsa.uiuc.edu:8181/data/

% set data=cx012.SS433.2006sep07.1.miriad.tar.gz

% wget -O - $base/$data | tar zxf -

or

% curl $base/$data | tar zxf -

This procedure will only work for recent data that are in the cache, for example all the “Tracks Transferred
within The Last Two Days” listed on the Quick Searches page fall under this category.

6.1.2 At CARMA

At CARMA (and OVRO) there is limited bandwith to the outside world, and CARMA data should
probably be directly copied via one of the cedarflat machines on /misc/sdp/sciencedata/, or in case
of older data, the directory /misc/sdp/archive sciencedata/ should contain data older than about a
month. Eventually those data will also disappear and can then only be retrieved via the Data Archive.

Notice one subtle naming convention: currently the site uses .mir names, where the data archive uses
.miriad! The data archive returns gzip compressed tar files, whereas the site only uses miriad data (i.e.
directories). The /misc/sdp/archive sciencedata/ are gzip compressed tar files again, but with the
site specific .mir convention.

6.2 Organizing your CARMA Data Tree

Once you start downloading your data, the question immediately arises where to put these data and
how to organize your data. Recall each observation results in a single multi-source MIRIAD dataset
containing all your sources and calibrators. We recommend that you place each of these datasets in a
separate directory, since your data reduction scripts likely will look very similar and this can result in a
more efficient way to organize your reduced files.

6.3. QUALITY CHECK 6-3

MyProject / Day1 / cx002.foo.1/visdata

flags

...

/ Day2 / cx002.foo.2/visdata

...

...

These “Day” directories are also a good place to put your observing script and logfile, as it was emailed
back to you after the track was finished. With this scheme, after calibration is done in each “Day”
directory, you might wind up with a script that combines all these data in the following way:

% invert vis=Day1/n1234c,Day2/n1234c,Day3/n1234c map=n1234.mp beam=n1234.bm

...

where each “Day” directory is assumed to have its cleaned and calibrated MIRIAD dataset named n1234c.

6.3 Quality Check

After your data was taken, a quality script ran at the observatory inspecting your data and giving it a
grade. The output of quality is normally also inspected by the resident observer(s). Once you have
downloaded your data from the archive, it is important for you to first check that all the data that
quality has reported, is actually also present in your dataset (most notably check the full timerange and
all the sources reported). A few Miriad programs are available for this, described in the next section,
though in theory you could also run quality yourself. Directions for running quality are located in the
Observer Help Pages.

You should be able to find your quality output from the CARMA webpage2 by going to “Observing with
CARMA” and following “Obtaining and reducing your data” to “Quality output”. Copy the output into
your directory and inspect it.

6.4 Data Inspection

There are several ways to get a useful summary of what is in your CARMA multi-source dataset. MIRIAD
programs listobs, uvindex and uvlist all have options to deal with this. As stressed before, it is a
good idea to double check if your dataset matches the one that your quality report saw.3

6.4.1 listobs

listobs gives an overall summary of the data: antenna positions w.r.t. the center of the array, baselines,
sources observed, frequency setup, and chronology of the observation. An example follows:

% listobs vis=cx012.SS433.2006sep07.1.miriad

Opening File: cx012.SS433.2006sep07.1.miriad

SUMMARY OF OBSERVATIONS

--

--

Input file: cx012.SS433.2006sep07.1.miriad

--

2See: http://cedarflat.mmarray.org/observing/quality/
3On occasion a glitch in the data transfer process has resulted in incomplete datasets

6-4 CHAPTER 6. WORK FLOW

Antenna and Baseline Information

Antenna Locations (in nsec) Antenna Locations (in m)

X Y Z E N U

Antenna 1: -29.9213 -98.3795 41.9036 -29.493 15.429 0.472

Antenna 2: -45.4240 117.2736 60.7055 35.158 22.729 0.188

Antenna 4: -66.6784 21.1092 89.9173 6.328 33.557 0.423

Antenna 5: -87.5850 -149.6982 121.2388 -44.878 44.825 1.123

Antenna 6: -123.4471 -95.6647 168.5641 -28.680 62.626 1.162

Antenna 7: 64.6595 77.8763 -87.9020 23.347 -32.710 -0.538

Antenna 8: 43.7087 42.8510 -59.7407 12.846 -22.188 -0.422

Antenna 9: 35.7017 -64.6192 -48.4809 -19.372 -18.048 -0.287

Antenna 10: 92.9788 -34.3857 -125.6435 -10.309 -46.855 -0.636

Antenna 12: 89.1192 -145.3247 -119.1938 -43.567 -44.615 -0.386

Antenna 13: 17.1266 40.2879 -24.0221 12.078 -8.840 -0.277

Antenna 14: -8.3007 65.6849 9.9469 19.692 3.880 -0.174

Antenna 15: 3.0289 142.9872 -5.0120 42.866 -1.746 -0.188

--

Baselines in Wavelengths

for Decl = 0 deg. Source at Transit

U V W UVdistance

Bsln 1- 2: -19941.18 -1738.59 1433.51 20016.82

Bsln 1- 4: -11048.97 -4439.77 3398.88 11907.61

Bsln 1- 5: 4745.37 -7336.03 5332.09 8737.04

...

Bsln 13-15: -9496.48 -1757.84 1303.60 9657.80

Bsln 14-15: -7148.05 1383.23 -1047.63 7280.65

--

Observed Sources Coordinates and Corr Freqs

Source RA Decl Vlsr Corfs in MHz

MARS 12 00 24.86 0 47 14.93 0.00E+00 0.0

3C273 12 29 06.70 2 03 08.60 0.00E+00 0.0

1830+063 18 30 05.94 6 19 16.00 0.00E+00 0.0

SS433 19 11 49.56 4 58 57.60 0.00E+00 0.0

noise 19 11 49.56 4 58 57.60 0.00E+00 0.0

--

Frequency Set-up

Source: SS433 UT: 235551 LST: 151057

Line Code: unknown Rest Freq: 92.4688 GHz IF Freq: 0.000 MHz

Velo Code: VELO-LSR Anten Vel: 0.00 km/s First LO: 95.0000 GHz

--

Source UT LST Dur Elev Sys Temps (K)

hhmmss hhmmss min deg 1 2 4 5 6 7 8 9 10 12 13 14 15

MARS 232853.5 144355.2 10.0 49. 340 384 295 295 339 490 543 531 339 446 256 352 627

3C273 233938.0 145441.5 10.0 54. 332 376 290 289 331 473 541 520 323 434 247 339 611

1830+063 235255.5 150801.2 2.0 39. 374 432 346 342 394 539 556 591 370 484 292 393 694

SS433 235551.0 151057.1 6.7 30. 437 491 406 394 450 615 689 674 458 581 361 470 776

noise 000242.0 151749.3 0.0 31. 427 482 390 383 443 641 695 696 446 590 381 489 808

1830+063 000350.0 151857.5 2.0 42. 392 430 353 351 404 542 557 596 386 495 297 398 716

SS433 000644.5 152152.4 6.7 32. 432 486 413 395 454 621 655 653 439 558 351 459 800

noise 001335.5 152844.6 0.0 34. 396 448 358 353 408 601 647 649 410 559 351 458 774

1830+063 001439.5 152948.7 2.0 44. 339 385 298 295 340 500 562 539 335 453 260 356 637

...

1830+063 072914.5 224535.1 2.0 26. 427 488 400 387 444 635 690 676 442 582 359 463 792

SS433 073207.0 224828.1 6.7 36. 380 437 349 345 389 581 624 620 397 524 310 415 713

1830+063 073938.5 225600.8 2.0 23. 460 517 428 414 465 662 728 728 476 608 382 494 832

--

Here, inspect if the antenna positions are indeed the ones obtained from those from the latest baseline
solutions. See also Section 6.5.2. Also pay attention to the system temperatures, near rising and setting
you might see some increased values, and some antennas are better than others, but there should be no
outliers.

6.4. DATA INSPECTION 6-5

6.4.2 uvindex

uvindex provides a useful display showing the track length, LO settings, etc. The output of uvindex
should be compared with the log sent by e-mail and the actual data length. Sometimes there is a failure
in filling the data properly, and the data archive center should be contacted.4 An example output of
uvindex follows:

% uvindex vis=cx012.SS433.2006aug25.1.miriad

UVINDEX: version 14-apr-06

Summary listing for data-set cx012.SS433.2006aug25.1.miriad

Time Source Antennas Spectral Wideband Freq Record

Name Channels Channels Config No.

06AUG25:23:26:45.5 MARS 15 90 6 1 1

06AUG25:23:37:39.5 3C273 15 90 6 1 1981

06AUG25:23:50:14.0 1830+063 15 90 6 1 3961

06AUG25:23:53:33.0 SS433 15 90 6 1 4357

06AUG26:00:00:15.0 noise 15 90 6 1 5677

06AUG26:00:01:26.5 1830+063 15 90 6 1 5743

06AUG26:00:04:17.5 SS433 15 90 6 1 6139

06AUG26:00:10:59.5 noise 15 90 6 1 7459

06AUG26:00:12:09.5 1830+063 15 90 6 1 7525

06AUG26:00:15:04.0 SS433 15 90 6 1 7921

06AUG26:00:21:46.0 noise 15 90 6 1 9241

...

06AUG26:03:03:58.0 1830+063 15 90 6 1 36037

06AUG26:03:06:49.0 SS433 15 90 6 1 36433

06AUG26:03:13:31.0 noise 15 90 6 1 37753

06AUG26:03:14:42.0 1830+063 15 90 6 1 37819

06AUG26:03:17:32.5 SS433 15 90 6 1 38215

06AUG26:03:24:14.5 noise 15 90 6 1 39535

06AUG26:03:25:29.5 1830+063 15 90 6 1 39601

06AUG26:03:27:09.5 Total number of records 39996

--

Total observing time is 3.27 hours

The input data-set contains the following frequency configurations:

Frequency Configuration 1

Spectral Channels Freq(chan=1) Increment

15 92.46875 -0.031250 GHz

15 93.46875 -0.031250 GHz

15 92.96875 -0.031250 GHz

15 97.53125 0.031250 GHz

15 96.53125 0.031250 GHz

15 97.03125 0.031250 GHz

Wideband Channels Frequency Bandwidth

92.23438 -0.468750 GHz

93.23438 -0.468750 GHz

92.73438 -0.468750 GHz

97.76562 0.468750 GHz

96.76562 0.468750 GHz

97.26562 0.468750 GHz

--

The input data-set contains the following polarizations:

There were 39996 records of polarization RR

--

4generic email: carma@ncsa.uiuc.edu

6-6 CHAPTER 6. WORK FLOW

The input data-set contains the following pointings:

Source RA DEC dra(arcsec) ddec(arcsec)

1830+063 18:30:05.94 6:19:16.00 0.00 0.00

3C273 12:29:06.70 2:03:08.60 0.00 0.00

MARS 11:29:54.84 4:11:08.34 0.00 0.00

SS433 19:11:49.56 4:58:57.60 0.00 0.00

noise 19:11:49.56 4:58:57.60 0.00 0.00

--

The input data contain the following AzEl offsets

Date vis# ant dAz dEl (ArcMin)

06AUG25:23:26:45.5 1 1 0.00 0.00

--

6.4.3 uvlist

A useful listing of the spectral windows can be obtained with uvlist

% uvlist vis=cx012.SS433.2006sep07.1.miriad options=spectra

rest frequency : 92.46875 92.46875 92.46875 92.46875 92.46875 92.46875

starting channel : 1 16 31 46 61 76

number of channels : 15 15 15 15 15 15

starting frequency : 92.46875 93.46875 92.96875 97.53125 96.53125 97.03125

frequency interval : -0.03125 -0.03125 -0.03125 0.03125 0.03125 0.03125

starting velocity : 0.000 -3242.095 -1621.047-16413.105-13171.010-14792.058

ending velocity : 1418.416 -1823.678 -202.631-17831.522-14589.427-16210.474

velocity interval : 101.315 101.315 101.315 -101.315 -101.315 -101.315

where you can see the 3 lower sideband windows and 3 upper sideband windows. Notice the rest frequency
in this example appear a little odd, being identical in all windows. See also Section 6.5.3 for a discussion
on this. Note that uvlist only displays the first selected frequency setting. If your source and calibrator
have a different setup, add select=source() to look at the appropriate setting for each object.

6.4.4 uvflag - initial check of flagged data

You should inspect how much data was flagged by the online system. As of March 2007, blanking has
been enabled at CARMA, and depending on conditions and the threshold setting chosen in the observing
script user-defined parameters, one can easily wind up with too much flagged data. Unflagging should of
course be done with caution. Currently the default threshold is 20%, i.e. if more than 20% of the (0.5
second) frames of an integration are blanked, that integration itself is flagged.

% uvflag vis=cx012.SS433.2006sep07.1.miriad options=noapply flagval=flag

...

Total number of records selected: 95628; out of 95628 records

Antennas used: 1,2,4,5,6,7,8,9,10,12,13,14,15

Counts of correlations within selected channels

channel

Good: 5894250

Bad: 2712270

wide

Good: 392950

Bad: 180818

6.5. INITIAL DATA CORRECTION 6-7

Just for the record, this is a very high fraction of flagged data. Normally you might see 0.1-1%. If you
have a high percentage of flagged data, you might want to look through the Nightly Report or Observing
Logs to discover the cause - antenna out-of-array, Rx problem, etc. If you discover serious data problems
not accounted for, you should inform the observers - obs@mmarray.org - who can investigate. Since
observers change twice a week, this is a good reason to check on your data quality within a few days.

6.4.5 Visual: uvplt, uvspec, varplt, uvimage, closure

Probably the most important thing to remember at various stages of your calibration is careful and
consistent data inspection. The end-goal of calibration is to create flat phases and/or flat amplitudes for
the calibrators as function function of frequency and/or time. Use uvflag and friends where needed to
edit out discrepant data that could throw of calibration routines.

For the calibrator(s), inspect the run of phase and amplitude as a function of time and channel. In this
example we are using the “sma” flavor of uvplt and uvspec:

% smauvplt vis=cx012.SS433.2006sep07.1.miriad select="source(3c273)" axis=time,phase interval=3

% smauvplt vis=cx012.SS433.2006sep07.1.miriad select="source(3c273)" axis=time,amp interval=3

% smauvspec vis=cx012.SS433.2006sep07.1.miriad select="source(3c273)" axis=chan,phase interval=999

% smauvspec vis=cx012.SS433.2006sep07.1.miriad select="source(3c273)" axis=chan,amp interval=999

Recall that “taskname -k” will give you a full description of all the program parameters.

To inspect the amplitudes in a totally different manner, construct a 3D cube from the visibility data and
view this with any of the FITS or MIRIAD image viewers that are available. Here is an example using
ds9:

% ds9 &

% uvimage vis=cx012.SS433.2006sep07.1.miriad out=cube1 select="-source(noise),-auto"

% histo in=cube1

% mirds9 cube1

Another useful (but busy) program for checking your data quality is the closure phase, which we expect
to be zero on average:

% closure vis=cx012.SS433.2006sep07.1.miriad select="source(3c273),-auto" device=/xs

To inspect a wide range of uv variables use varplt (a list can be found in Appendix D):

% varplt vis=cx012.SS433.2006sep07.1.miriad device=/xs yaxis=systemp nxy=5,3 yrange=0,2000 options=compress

shows C3 and C11 are not online. Autoscaling showed C2 has a bad point. But overall something bad
happened around 5h UT. See Figure 2.1

6.5 Initial Data Correction

6.5.1 Archive based corrections

The CARMA Data Archive will typically re-fill data from its basic constituents (the visbrick and the
monitor points) whenever the data is requested. This could thus mean that the data used by the quality

6-8 CHAPTER 6. WORK FLOW

Figure 6.1: System temperature plot for 3C273 made with varplt, cx012.SS433.2006sep07.1.miriad

script might be different from that obtained from the Data Archive.

You can save a checksum of your data and/or use the version of the data that is stored inside the visibility
data. That way you will be able to decide if your data reduction will have to be redone.

% uvlist vis=cx012.SS433.2006sep07.1.miriad options=var,full | grep version

UVLIST: version 4-may-06

version :0.1.2

% mdsum cx012.SS433.2006sep07.1.miriad

518864276e75f081e68156fbf3ac12a3 cx012.SS433.2006sep07.1.miriad.tar.gz

Appendix E lists the various problems that could have occured with your data at different stages of
the commissioning of CARMA in 2006/7. Especially if you are re-calibrating your data after some new
insight, it makes sense to check if you should re-fetch the data.

6.5. INITIAL DATA CORRECTION 6-9

6.5.2 Baseline correction

You should always check if you need to (re)apply baseline corrections5. Although your data may come
with a pretty decent baseline solution, often a few weeks into a new array configuration improved baselines
will become available. In the first few days up to several weeks after a move, baselines can settle and
may need to be re-applied from the newly computed ones. Normally these are stored in a small ascii
table with equatorial values in nanoseconds. (cf. uvgen baseunit=1). Antpos datafiles can be found6

at http://cedarflat.mmarray.org/observing/baseline/, as well in your local MIRIAD distribution
in $MIRCAT/baselines/carma7 To apply a new baseline, apply the program uvedit to your multisource

data set. Be sure to apply the new baseline to all sources (but not the NOISE source):

uvedit vis=xxx.mir out=yyy.mir apfile=$MIRCAT/baselines/carma/antpos.070115

In rare cases, a new and better solution is found a month or so after your data were taken. Check the
status of the baseline solution on the above mentioned web page. It is a good idea to apply an appropriate
solution if you are not sure which solution has been applied to your data. No harm is done if you apply
a solution that has already been applied.

Notice that for data taken during a move (which can take several days and the array will be in some
hybrid configuration) an antpos file will be available for each day. Please check the time validity carefully,
either by filename, or comments in the file.

Errors due to baselines can be seen as slopes in phase vs. time. See Figure ...

You can also visually check how much the baselines changed from what is available in your visibility
dataset, by comparing the X-Y-Z values (in nsec) in the antpos file with what listobs produced.

6.5.3 Rest Frequency (bugzilla 409)

Certainly during the initial campaigns, CARMA data were written with a rest frequency equal to the
starting frequency in the first window of the LSB. This is most likely wrong for your data. Look again
at the output of uvlist:

% uvlist vis=xxx.mir options=spec

rest frequency : 100.27057 100.27057 100.27057 100.27057 100.27057 100.27057

starting channel : 1 16 31 46 61 76

number of channels : 15 15 15 15 15 15

starting frequency : 100.27057 100.73054 101.19050 104.33300 103.87304 103.41307

frequency interval : -0.03125 -0.03125 -0.03125 0.03125 0.03125 0.03125

starting velocity : -23.654 -1398.978 -2774.302-12170.599-10795.275 -9419.951

ending velocity : 1284.502 -90.822 -1466.146-13478.755-12103.431-10728.107

velocity interval : 93.432 93.432 93.432 -93.432 -93.432 -93.432

To fix this, you can set the restfreq variable to the (in this case CO 1-0) line you are interested in:

% uvputhd in=xxx.mir hdvar=restfreq varval=115.271203 out=yyy.mir

The drawback of this procedure is that the uv variable is now “promoted” to a (miriad) header variable,
and in the process losing any potential time variability as well as (in this case 6) dimensionality.

5any data prior to 22-jan-2008 should always be corrected
6At CARMA, /home/obs/web pages/observing/baseline/ is the official repository
7use cvs update to get any updated baselines

6-10 CHAPTER 6. WORK FLOW

At this stage it is perhaps useful to remind you of the difference between a UV variable, which can be
viewed as possibly time dependant variables, and a header item. Both are present in UV datasets. The
program uvputhd can operate on UV variables. Technically they live in the DATASET/visdata item. On
the other hand, scalar items can be manipulated with puthd. If you create an item with the same name
as a UV variable, that UV variable has now been made time-independent and is hidden from view until
you remove the item with delhd.

6.5.4 Linelength Correction

The linelength system monitors changes in the delays through the optical fibers to the antennas. The
delays vary as the fibers change temperature. The delay variations are small, typically less than 0.05
nsec on time scales of hours, but they are enough to cause significant phase drifts of the local oscillators
on the receivers. Since these changes are measured accurately by the linelength system, the corrections
should be applied.

Phase corrections from the linelength system are stored in the Miriad uv variable phasem1, which is an
antenna based variable.

To apply the linelength corrections, use the Miriad program linecal, which writes an antenna based
calibration table in the dataset that can be applied. However, don’t expect perfection - the linelength
system cannot correct for differences in the thermal expansion of the antenna structure (particularly
BIMA vs OVRO) or for changes in the temperature of the phaselock electronics. Schematically we will
do:

linecal vis=$data

gpplt vis=$data yaxis=phase nxy=5,3 device=/xs options=wrap

uvcat vis=$data out=$data.lc

Here the gpplt commands displays the actual phase corrections that are going to applied in uvcat. You
might see many wraps, but remember it is only the differences in phases that matter, these are antenna
based phases you are looking at.

TODO: careful with select=-source(noise)

TODO: say more about the difference between linecal and uvcal options=linecal

6.5.5 Other UV variables

Some data bugs cannot be fixed by refilling the data from the archive. For example at some point in the
past the latitude was erroneously set to 0 (latitude=0) In this case programs such as puthd will work
fine for variables that do not depend on time. In the first example we see how to fix the latitude (stored
as 0 in the SS443 dataset) such that the ENU coordinates were printed correctly:

% puthd in=cx012.SS433.2006sep07.1.miriad/latitud value=0.6506654009 type=double

Developers and observers typically file these problems as bugs in our bugzilla database. This particular
bug was filed as bug # xxx and was caused by using multiple sub-arrays and one subarray polluting the
data in another.

TODO: check on the uvedit problem with missing LO2.

6.5.6 Data Flagging and Editing

Chapter 10 in the Miriad Users Guide has an extensive discussion on flagging your visibility data. The
two important programs that allow you to interactively flag are uvflag and blflag.

6.5. INITIAL DATA CORRECTION 6-11

Programs such as uvplt and varplt can be used to inspect data and decide what baselines, antennae,
time-ranges etc. need to be flagged. Another potentially useful way is a relatively new program uvimage

which creates a Miriad image cube out of a visibility dataset. This 3 dimensional dataset can be viewed
with programs like ds9 or karma’s kvis, and guide you how to flag the data using uvflag. It is possible
to come up with a procedure that ties keystrokes in ds9 to the creation of a batch script that runs uvflag
afterwards, and this is a likely change in upcoming versions of MIRIAD.

% uvimage vis=cx012.SS433.2006sep07.1.miriad out=visbrick1

UVIMAGE: version 22-dec-2006

Mapping amp

Informational: Datatype is complex

Nvis= 95628 Nant= 13

Nchan= 90 Nbl= 78 Ntime= 1226 Space used: 8606520 / 17432576 = 49.370327%

number of records read= 95628

% mirds9 visbrick1

The most useful output mode is amplitudes (the default) where the cube will be constructed with channels
along the X axis, baselines along Y and time along Z. The X axis is represented in ds9 by different planes
in ds9). As you move the Data Cube slider you will see different channel-baseline images of the visibility
amplitudes at different times. Look for a change in noise, regions of pure 0s, vertical spikes (a.k.a.
birdies), horizontal spikes (bad baselines or antennae). These will potentially all have to be flagged.
Overall noise increase that is the result of a higher system temperature will be accounted for though (see
invert).

6.5.7 Flagging Birdies and End Channels

An example of a birdie (often a antenna based single channel with high amplitudes) can be flagged easily
with uvflag using line=chan,n,start,width,step:

#Birdies

uvflag vis=$cfile "select=ant(1)" line=chan,1,32,1,1 flagval=flag

uvflag vis=$cfile "select=ant(1)" line=chan,1,95,1,1 flagval=flag

uvflag vis=$cfile "select=ant(1)" line=chan,1,158,1,1 flagval=flag

uvflag vis=$cfile "select=ant(7)" line=chan,5,4,1,1 flagval=flag

#End channels

uvflag vis=$cfile line=chan,1,4,1,1 flagval=flag

uvflag vis=$cfile line=chan,1,186,1,1 flagval=flag

After this you should recompute the wide band averages using uvwide, if you plan to use the wide band
explicitly.

6.5.8 Flagging using tvflag and pgflag

The interactive flagging program tvflag must be run on an 8-bit (a.k.a. PseudoColor) display. Most
modern desktops are so color rich, they cannot be effectively run in an 8-bit display, though twm and fvwm

can. For example, on Linux you can start a second X session from another console (e.g. ctrl-alt-F2):

% startx -- -depth 8 :1

or use VNC:

6-12 CHAPTER 6. WORK FLOW

% vncserver :1 -depth 8 -cc 3 -geometry 1024x768

% vncpasswd

% vncviewer :1

% xmtv &

% tvinit server=xmtv@localhost

% tvflag vis=vis0 server=xmtv@localhost

% vncserver -kill :1

An alternative program, using PGPLOT, and called pgflag is available.

6.5.9 Flagging based system temperatures

Although the mapping program invert has an option to weigh your data by the system termperatures
(options=systemp, it may also be advantageous to throw away data with large system temperatures.

For example:

% uvflag vis=cx012.SS433.2006sep07.1.miriad tsys=1000 flagval=flag

would flag all records where the system temperature was above 1000K.

6.5.10 Flagging based on tracking errors

The axisrms UV variable holds the tracking error (in arcsec, in Az and El) for each antenna in the array.
It can be useful to automatically flag data when the tracking is above a certain error, or even antennae
based (e.g. allow OVRO to have a smaller tolerance than the BIMA antennae).

% varplt vis=c0048.umon.1.miriad device=/xs yaxis=axisrms options=overlay yrange=0,100

% uvflag vis=c0048.umon.1.miriad ’select=-pointing(0,5)’ flagval=flag options=noapply

The exact amount (5 arcsec in this example) is left to your own judgement, and you should probably
also base this on the inspection of the graphical output of varplt. But in case you were wondering, the
recommended value is 5.

6.6 Calibration

6.6.1 Passband Calibration

When a strong calibrator is available it can be used using mfcal to correct the passband of your other
sources (not just the target source, but also for example the phase and amplitude calibrator). Choose a
small interval to construct the antenna based passband, and inspect the solutions with gpplt:

% mfcal vis=pbcal.mir interval=0.5 refant=9

% gpplt vis=pbcal.mir device=/xs options=bandpass yaxis=amp nxy=5,3

% gpplt vis=pbcal.mir device=/xs options=bandpass yaxis=phase nxy=5,3

% gpplt vis=pbcal.mir device=/xs options=gains

6.6. CALIBRATION 6-13

The passband gains can then be copied to your other sources, for subsequent calibration and/or mapping:

% gpcopy vis=pbcal.mir out=phasecal.mir options=nocal

% uvcat vis=phasecal.mir out=phasecal_pb.mir

and then you can proceed calibrating the now passband corrected data for the phase calibrator. The
same applies to any other (e.g. your science source) sources that need to be further calibrated.

6.6.2 Simple single calibrator

When a calibrator is strong enough in the same window as the source is observed, we can simply determine
a selfcal solution8 for the calibrator and apply this to the source:

Here is an annoted section of C-shell code exemplifying this:

set vis=cx011.abaur_co.2006nov21.1.miriad

check phase in W2 (narrow) and W3 (wide)

TODO: lingo wwong here: W2/W3 vs. p,A

smauvplt vis=$vis device=/xs axis=time,phase line=wide,1,3 "select=-source(abaur)"

smauvplt vis=$vis device=/xs axis=time,amp line=wide,1,3 "select=-source(abaur)"

check bandpass

uvspec vis=$vis device=/xs "select=-auto,source(3c111)" axis=chan,amp interval=999

uvspec vis=$vis device=/xs "select=-auto,source(3c111)" axis=chan,pha interval=999

uvspec vis=$vis device=/xs "select=-auto,source(0530+135)" axis=chan,amp interval=999

uvspec vis=$vis device=/xs "select=-auto,source(0530+135)" axis=chan,pha interval=999

use W5 , the narrow band in this case

rm -rf 0530+135

uvcat vis=$vis "select=-auto,source(0530+135)" out=0530+135

selfcal vis=0530+135 refant=5 interval=5 line=wide,1,5,1 options=amp,apriori,noscale flux=4.6

gpplt vis=0530+135 device=1/xs yaxis=amp nxy=5,3 yrange=0,3

gpplt vis=0530+135 device=2/xs yaxis=pha nxy=5,3 yrange=-180,180

rm -rf abaur

uvcat vis=$vis "select=-auto,source(abaur),win(5)" out=abaur

puthd in=abaur/restfreq type=double value=115.271203

gpcopy vis=0530+135 out=abaur

copyhd in=0530+135 out=abaur items=gains,ngains,nsols,interval

6.6.3 Autocorrelation

Auto-correlations are handled by the datafiller as of January 31, 2007 (see also Appendix E). Visibility
data auto-correlations are stored as baselines with the same antenna pair, and show up before the cross-
correlations.

% uvlist vis=c0048.umon.1.miriad recnum=20 line=wide,3

...

Vis # Time Ant Pol U(kLam) V(kLam) Amp Phase Amp Phase Amp Phase

1 05:02:30.7 1- 1 RR 0.00 0.00 104.786 0 105.167 0 106.508 0

2 05:02:30.7 2- 2 RR 0.00 0.00 105.545 0 106.359 0 107.692 0

3 05:02:30.7 4- 4 RR 0.00 0.00 105.542 0 106.023 0 107.893 0

...

14 05:02:30.7 15- 15 RR 0.00 0.00 104.073 0 105.818 0 107.511 0

8cf. also the gmakes/gfiddle/gapply approach for BIMA data

6-14 CHAPTER 6. WORK FLOW

15 05:02:30.7 1- 2 RR 0.00 0.00 98.883 34 97.093 46 100.276 59

16 05:02:30.7 1- 4 RR 0.00 0.00 98.703 24 96.451 20 99.647 59

...

Some programs use these data for calibration purposes. For example uvcal has an option to normalize
the cross-correllation data Vij by the preceding auto-correlation data with

√

ViiVjj . This is a different
method to (amplitude) bandpass calibrate.

% uvcal vis=xxx.mir out=yyy.mir options=fxcal

6.6.4 Noise Source Passband Calibration

The noise source is only present in the LSB and can also be used to bandpass calibrate narrow calibrator
modes. Only for data since early December 2006 has the signal of the Noise Source been sufficiently
amplified to be useful for this calibration mode.

The following procedure uses the phases of a wide band signal (in Window 2) and applies them to a
narrow band signal, in order to check phase transfer:

bwsel can select out pieces of a track with the same BW settings

% selfcal vis=ct010.500_500_500.2006dec01.1.miriad select=’source(3c279),win(2)’ refant=9 interval=20

% uvcat vis=ct010.500_8_500.2006dec01.1.miriad out=3c279.8mhz.1dec select=’source(3C279)’

% gpcopy vis=ct010.500_500_500.2006dec01.1.miriad out=3c279.8mhz.1dec options=nopass

The phases in the 3c279.8mhz.1dec data can now be compared to that of the noise source, and will still
show offsets compared to that of the noise source.

The amplified noise source can effectively remove any passband variations. For example, to apply an
mfcal solution on the narrow band of the noise source (skipping the first channel):

% mfcal vis=ct010.500_31_500.2006dec01.1.miriad interval=999 line=channel,62,2,1,1 refant=9 tol=0.001 \

select=’source(noise),win(2)’

If the signal of interest is in the USB, where there is no noise source, the data will have to be conjugated
into the USB and headers faked in order for mfcal to apply the correction, after a slight manual copying
of important header variables:

% uvcat vis=ct010.500_31_500.2006dec01.1.miriad out=noise.lsb select=’source(noise),win(2)

% uvcat vis=ct010.500_31_500.2006dec01.1.miriad out=source.usb select=’source(3C279),win(5)’

% uvcal vis=noise.lsb options=conjugate out=noise.usb

look at the parameters for the spectra in USB and LSB

% uvlist vis=source.usb options=spec

% uvlist vis=noise.lsb options=spec

cheat and copy two important variables accross

note sfreq varies with time, sdf does not

see bandcal.csh for more automated methods

% uvputhd vis=noise.usb hdvar=sfreq varval=96.99336 out=noise2.usb

% rm -rf noise.usb

6.6. CALIBRATION 6-15

% uvputhd vis=noise2.usb hdvar=sdf varval=0.00049 out=noise.usb

now calibrate USB

% mfcal vis=noise.usb interval=9999 line=channel,62,2,1,1 refant=9 tol=0.001

% gpcopy vis=noise.usb out=source.usb options=nocal

6.6.5 Phase Transfer

After the passband solution has been derived and copied to the other sources in your track (e.g. phase
calibrator, flux calibrator, science targets), you will want to calibrate the phase (and possibly amplitude)
as it changes with time over the course of your observations. This is accomplished by self-calibrating on
your gain calibrator, which was observed periodically over the course of your observations, and then using
this solution for your science target(s). The necessary assumption is that the atmospheric variations are
the same for the science target as for the gain calibrator, which of course depends on the angular distance
between the two.

Here is an example of how phase transfer is accomplished:

1: set VIS = c0001.example.passband.miriad

2: uvcat vis=$VIS select="source(3C273),win(1),-auto" out=3C273.w1.passband.miriad

3: uvcat vis=$VIS select="source(science),win(1),-auto" out=science.w1.passband.miriad

4: selfcal vis=3C273.w1.passband.miriad refant=8 interval=5 options=phase

5: gpcopy vis=3C273.w1.passband.miriad out=science.w1.passband.miriad

In line 1, the passband calibrated data is defined as ”c0001.example.passband.miriad”.

In line 2, UVCAT is used to select the first window (the lower sideband of band 1) of the gain calibrator
(3C273) and write out just this data in a file called ”3C273.w1.passband.miriad”.

In line 3, UVCAT is used to select the first window (the lower sideband of band 1) of the science target
(science) and write out just this data in a file called ”science.w1.passband.miriad”.

In line 4, SELFCAL is used to derive the phase solution as a function of time using the gain calibrator.
The reference antenna is defined as C8 (refant=8), which was chosen because it was in the center of
the array and didn’t have to be flagged earlier on in the data reduction process. The interval was set
to five minutes (interval=5) because that is the amount of time spent on the gain calibrator in each
calibrator-science target cycle. Finally, SELFCAL was only used to find the variation of phase with time,
and not amplitude with time, by setting options=phase. Amplitude calibration will be discussed in a
later section.

In line 5, the phase/time solution derived in line 4 is copied from 3C273 data to the science target.

The above example only calibrates one window of the calibrator and copies that solution to the same
window of the science target. Of course, you will want to calibrate every window. For continuum
observations, each window has 500 MHz bandwidth, and the easiest way to calibrate the data will be to
derive a solution for each window of the gain calibrator and copy the solution to the same window of
the science target. For most line observations, usually one or two bands will have narrow bandwidth (62
MHz or less) and the remaining band(s) will have 500 MHz bandwidth. In this case, it is probably best
to derive the SELFCAL solution on the gain calibrator for the 500 MHz window and copy that to the
other windows in the same sideband.

Here is an example of how to derive the phase/time solution for a narrow band dataset in which band 1
has 500 MHz bandwidth and bands 2 and 3 have 8 MHz bandwidth:

1: set VIS = c0001.example.passband.miriad

6-16 CHAPTER 6. WORK FLOW

2: uvcat vis=$VIS select="source(3C273),win(1),-auto" out=3C273.w1_500.passband.miriad

3: uvcat vis=$VIS select="source(3C273),win(2),-auto" out=3C273.w2_8.passband.miriad

4: uvcat vis=$VIS select="source(3C273),win(3),-auto" out=3C273.w3_8.passband.miriad

5: uvcat vis=$VIS select="source(3C273),win(4),-auto" out=3C273.w4_500.passband.miriad

6: uvcat vis=$VIS select="source(3C273),win(5),-auto" out=3C273.w5_8.passband.miriad

7: uvcat vis=$VIS select="source(3C273),win(6),-auto" out=3C273.w6_8.passband.miriad

8: uvcat vis=$VIS select="source(science),win(1),-auto" out=science.w1_500.passband.miriad

9: uvcat vis=$VIS select="source(science),win(2),-auto" out=science.w2_8.passband.miriad

10: uvcat vis=$VIS select="source(science),win(3),-auto" out=science.w3_8.passband.miriad

11: uvcat vis=$VIS select="source(science),win(4),-auto" out=science.w4_500.passband.miriad

12: uvcat vis=$VIS select="source(science),win(5),-auto" out=science.w5_8.passband.miriad

13: uvcat vis=$VIS select="source(science),win(6),-auto" out=science.w6_8.passband.miriad

14: selfcal vis=3C273.w1.passband.miriad refant=8 interval=5 options=phase

15: selfcal vis=3C273.w4.passband.miriad refant=8 interval=5 options=phase

16: gpcopy vis=3C273.w1.passband.miriad out=science.w1_500.passband.miriad

17: gpcopy vis=3C273.w1.passband.miriad out=science.w2_8.passband.miriad

18: gpcopy vis=3C273.w1.passband.miriad out=science.w3_8.passband.miriad

19: gpcopy vis=3C273.w4.passband.miriad out=science.w4_500.passband.miriad

20: gpcopy vis=3C273.w4.passband.miriad out=science.w5_8.passband.miriad

21: gpcopy vis=3C273.w4.passband.miriad out=science.w6_8.passband.miriad

22: gpcopy vis=3C273.w1.passband.miriad out=3C273.w2_8.passband.miriad

23: gpcopy vis=3C273.w1.passband.miriad out=3C273.w3_8.passband.miriad

24: gpcopy vis=3C273.w4.passband.miriad out=3C273.w5_8.passband.miriad

25: gpcopy vis=3C273.w4.passband.miriad out=3C273.w6_8.passband.miriad

In lines 2-13 we split the passband calibrated data into 12 files, one for each source (the gain calibrator
and the science target) and window (windows 1-6). In lines 14+15 we derive the phase/time solution for
the gain calibrator (3C273) in the two wide (500 MHz) windows. In lines 16-18 we copy the solution from
window 1 of the gain calibrator to windows 1-3 (the lower sideband windows) of the science target. In
lines 19-21 we copy the solution from window 4 of the gain calibrator to windows 4-6 (the upper sideband
windows) of the science target. Finally, in lines 22-25 we copy the solution from the wide bands of the
gain calibrator to the narrow bands of the gain calibrator.

6.6.6 PACS calibration

In PACS (“Paired Antenna Calibration Scheme”) mode, a set of CARMA and SZA antennas (currently
8) are paired up (they are physically close to each other) in the A- or B-array. The SZA phases of a
quasar at 1cm can be scaled up by the ratio of the observing frequencies to apply a correction to the
1mm or 3mm CARMA phases, to compensate for the rapid atmospheric phase fluctuations. While the
SZA is continuesly observing the quasar to obtain these corrected phases, CARMA is switching between
the quasar and science source in the usual source-cal cycle.

There are currently two methods to apply PACS calibration, baseline based and antenna based, de-
scribed in the next two sections.

Antenna based: gpbuddy

In the antenna based approach, a selfcal solution is first obtained, which determines a time dependant
gain (read: phase) for each antenna9, g1(i1, t1) for the CARMA antennas (i1), and g2(i2, t2) for the SZA
antennas (i2). The scaled SZA phases can now be applied to the CARMA phases to obtain the phase
correction:

φC
i1j1

= φC
i1j1

− αφS
i2j2

where α is the ratio of the observing frequencies at CARMA to SZA. This number is around 3 for 3mm
and 7 for 1mm.

9this is actually done in two steps, a longer time interval based selfcal is first applied to remove any gross drifts

6.6. CALIBRATION 6-17

For various reasons this calibration is currently a two-step process MIRIAD. The program gpbuddy

computes the antenna based SZA phase correction (αφS
i2
), and stores these into the phaseatm uv-

variable of the output dataset. These phase corrections are then applied in a baseline based mode
using options=atmcal in uvcal, including a small bandpass slope correction based on ν/ν0, where ν0 is
normally LO1.

The following example illustrates this style of phase calibration, skipping the usual passband calibration,
but starting with the slow selfcal, the rapid selfcal, and finally transferring the phases from SZA to
CARMA.

We have the following sources:

cal_c : carma calibrator, roughly only every 20mins for 5 mins

cal_s : sza calibrator, continuesly observed

src : carma source, roughly only every 20 mins for 15 mins

#

to keep the example simple, some keyword (e.g. refant) are omitted

step 1: slow and fast selfcal for the CARMA calibrator

selfcal vis=cal_c interval=3

uvcat vis=cal_c out=cal_cs

selfcal vis=cal_cs interval=0.05 #### gains actually unused

step 2: slow and fast selfcal for the SZA calibrator

selfcal vis=cal_s interval=3

uvcat vis=cal_s out=cal_ss

selfcal vis=cal_ss interval=0.05

step 3: apply SZA calibrator phases to CARMA calibrator (so you can check improvement)

gpbuddy vis=cal_cs vis2=cal_ss out=cal_ca

uvcal vis=cal_ca out=cal_atm options=atmcal

step 4: apply SZA calibrator phases to CARMA source, but first apply slow CARMA calibrator

gpcopy vis=cal_c out=src

uvcat vis=src out=src_s

gpbuddy vis=src_c vis2=cal_ss out=src_ca

uvcal vis=src_ca out=src_atm options=atmcal

GPBUDDY is a MIRIAD task that copies the gain table of a selected number of antennas into a second
set of antennas in another dataset. It is intended to be used in conjunction with UVCAL,to perform
antenna-based atmospheric phase correction. All non-selected antennas have the option of having their
gains interpolated from paired antennas using different methods.

GPBUDDY will take the gains corresponding to the antennas in list2 from the dataset specified by vis2,
then set their amplitudes to one and multiply the phases by a given scale factor, then unwrap them
and write them into the antenna-based phaseatm uv variable in the vis dataset for the antennas in
list1. Antennas present in vis but not listed in list1 will get a phaseatm value that is obtained from the
application of the specified method. Antennas for which the method produce no solution will be flagged
during that time interval. uvcal options=atmcal will interpret these phaseatm tables at phases at the
LO1 frequency and correctly compute and apply the atmospheric delays.

Program: GPBUDDY

6-18 CHAPTER 6. WORK FLOW

Keyword: vis

The input visibility file, containing the visibility data

to be copied with an additional phaseatm table.

No default.

Keyword: out

Output file for vis, if selected. This file will contain the phaseatm

variable derived from the gains of a buddy antenna.

Keyword: vis2

The 2nd input visibility file, containing a selfcal gain table from

which gains will be applied to antennas in the primary

dataset (the gain table of the input visibility file).

Default is to leave this blank, which will simply copy

gains internally from the primary visibility dataset.

Keyword: show

Show the East-North layout (in meters) in tabular format.

LISTOBS will also print these out by default.

Default: false

Keyword: list1

The list of primary antennas to receive new gains.

Keyword: list2

The 2nd list of paired antennas to apply gains to primary

Keyword: scale

This is usually a number larger than 1 and can normally be

computed from the ratio of the effective frequencies at which the two

gain solutions were derived.

Currently no default allowed, since we have not properly

obtained these effective frequencies. The usual numbers are 3.09 for

3mm and 7.4 for 1mm.

Keyword: options

** not used at the moment **

Keyword: mode

gains or phaseatm.

For gains the gains of the input file(s) are overwritten,

For phaseatm you will need to supply (an) output file(s).

DO NOT USE.

Default: phaseatm

Keyword: nearest

Use nearest neighbor for time interpolation. If not, linear

interpolation is used.

Default: true.

Will become false, since nearest doesn’t know how to flag

when nothing in the interval.

Keyword: method

Method by which antenna phased of non-paired antennas are

deduced.

Currently implemented are:

power: inverse power law weighted average on projected distance

gaussian: Gaussian weighted average on projected distance

tophat: equal weights within a projected radius

parabol: inverse projected distance square within a radius

none: none, the phase corrections for non-buddies are 0 (not implemented)

Default: power

Keyword: param

Parameter for the weighting function method.

For power-law: negative of the power index

For gaussian: Gaussian FWHM (in nanoseconds)

For tophat: radius (in nanoseconds)

For parabol: radius (in nanoseconds)

6.6. CALIBRATION 6-19

Default: 2

Keyword: antipol

Compute antenna phases for non-paired antennas by interpolating

over paired antennas using a user-selectable weighting function

specified by wscheme and param

Default: true

Keyword: reset

Normally for non-paired antennas the phaseatm are set to 0,

to prevent any changes to those antennae. However, these baselines

are not flagged. By setting reset=false you will then force these

baselines to be flagged.

Default: false

WARNING this keyword will disappear and absorbed into method=

Baseline based: bldelay

BLDELAY is a Miriad program that reads baseline phases and derives estimates for the atmospheric
delay. The visibility data should have been calibrated to give zero phases in all windows and channels at
the start of the data. There is no averaging done. If this is required it should be done in another Miriad
task.

Program: BLDELAY

Keyword: vis

The input visibility file. No default.

Keyword: out

The file containing the derived delays.

Keyword: options

The options are

mean (default) estimate the delay from the mean phase

across the band divided by the mean frequency,

and zero phase at zero frequency

slope estimate the delay from the slope across all the

bands or channels

track track phases in time to resolve wraps

Keyword: select

This selects the data to be processed, using the standard uvselect

format. Default is all data.

Keyword: line

Specify whether to use the wideband ("wide") or channel

("channel") data to derive the delays.

Keyword: wraps

Number of 2*pi steps to search for the best delay fit. The

default is 3 (to search +/- 3*pi)

minipacs

A method was divised to quickly asses the amount of success PACS can have. This is dubbed minipacs,
in which two nearby quasars are observed and the difference between regular and PACS calibration can
be quickly assessed. It was first used in the winter 2009/2010 PACS campaign.

6-20 CHAPTER 6. WORK FLOW

6.6.7 Absolute Flux Calibration

Although one can rely on known fluxes of strong calibrators such as 3C273 and 3C111, their actual flux
varies with time and you will need to depend on what CARMA, or other observatories, have supplied for
you. The best method is to add a planet for bootstrapping the flux of your flux calibrator, at least if a
planet in available during your observation. An alternative way is to use a planet, if available, in your
observation and bootstrap its flux to scale the flux of your phase or amplitude calibrator. 10

During commissioning CARMA maintained a list of 12 “secondary flux calibrators”11 and publishes their
fluxes as function of time. The current list is 4 (3C84, 3C273, 3C345, and MWC349) for which - based on
1mm and 3mm - also a spectral index is recorded if a reliable planet is available. Fluxes are maintained
in MIRIAD in a database that you can consult using the calflux program:

% calflux source=3c84

...

Flux of: 3C84 03FEB13.00 at 86.2 GHz: 4.30 Jy; rms: 0.20 Jy

Flux of: 3C84 03MAR28.00 at 86.2 GHz: 4.30 Jy; rms: 0.20 Jy

Flux of: 3C84 03APR17.00 at 86.2 GHz: 4.20 Jy; rms: 0.30 Jy

Flux of: 3C84 03AUG17.00 at 86.2 GHz: 4.00 Jy; rms: 0.30 Jy

Flux of: 3C84 03AUG18.00 at 86.2 GHz: 4.10 Jy; rms: 0.30 Jy

Flux of: 3C84 03SEP25.00 at 86.2 GHz: 4.50 Jy; rms: 0.20 Jy

Flux of: 3C84 06DEC12.00 at 93.3 GHz: 6.57 Jy; rms: 0.99 Jy

...

Flux of: 3C84 07OCT03.00 at 224.0 GHz: 4.53 Jy; rms: 0.68 Jy

Flux of: 3C84 07OCT10.00 at 93.4 GHz: 7.41 Jy; rms: 1.11 Jy

Flux of: 3C84 07OCT10.00 at 224.0 GHz: 3.57 Jy; rms: 0.54 Jy

Flux of: 3C84 07OCT12.00 at 95.0 GHz: 6.60 Jy; rms: 0.10 Jy

Flux of: 3C84 07OCT12.00 at 90.7 GHz: 6.80 Jy; rms: 0.10 Jy

....

This calibration list consists of the older BIMA flux calibrator list (1985-2002), appended with new
CARMA values. There is a gap between November 2002 and December 2006, which includes the time
the BIMA dishes were moved from Hat Creek to Cedar Flat for the CARMA merge.

Another source of information is the flux data maintained by ATCA12 and SMA13.

xplore is a tool outside of miriad that also contains time-flux tables for each source based on the same
table.

bootflux... example

6.6.8 Absolute Flux Calibration: MARS

A special case has been reserved for the planet Mars, since it offers an option to fine-tune your calibration.
The Miriad task marstb will interpolate a table of calculated values to a given frequency and date in the
range 1999-2014, used as follows:

To find the model value:

% marstb epoch=08mar02 freq=95.0

Brightness temperature at 95.0 GHz: 187.675

to find the value of brightness temperature used in your data, read the variable PLTB using either the
varplt log option or uvio if it is in your distribution, e.g.

% varplt vis=ct007.mars_88GHz.2006nov12.1.mir yaxis=pltb log=tblog

10http://www.astro.uiuc.edu/∼wkwon/CARMA/fluxcal
110319+415 (3C84), 0530+135, 0854+201, 0927+390, 1229+020 (3C273), 1256-057 (3C279), 1642+398, 1751+096,

2148+069, 2225-049 (3C446), 2251+158 (3C454.3), and MWC349
12http://www.narrabri.atnf.csiro.au/calibrators/
13http://sma1.sma.hawaii.edu/callist/callist.html

6.7. MAPPING AND DECONVOLUTION 6-21

or

% uvlist vis=ct007.mars_88GHz.2006nov12.1.mir options=var,full | grep pltb

pltb 206.6920013

To change the value of PLTB in your file, use uvputhd (makes new file):

% uvputhd vis=ct007.2008mar02_3mm.mars.1.mir hdvar=pltb varval=187.675 \

type=r out=ct007.2008mar02_3mm.mars.1.mir_fixed

This is actually an example where puthd should work just as well:

% puthd in=ct007.2008mar02_3mm.mars.1.mir/pltb value=187.675 type=real

The model values are disk-averaged Planck brightness temperatures from the Caltech Thermal Model. As
Mel noted, Mars isn’t always a disk and dust storms can’t be accomodated in this model, but the Caltech
model values should be more reliable than CARMA’s previous model (10% different in the example above
from a month ago).

6.7 Mapping and Deconvolution

CARMA is a heterogeneous array, currently with 3 different types of antennae (10.4m, 6.1m and 3.5m),
and as such will contribute 6 different types of baselines with OVRO-OVRO, BIMA-BIMA and OVRO-
BIMA baselines. The latter is currently labeled in the visibility data as a CARMA (nominally about 8m)
antennae, the first two simply being “pure” OVRO (10m) and HATCREEK (6m) 14.

If you want to map anything but a point source in the phase center, you MUST map your source in
mosaic’d mode, even if you have a single pointing!

6.7.1 Mosaicing

mospsf needs to estimate the “average” beam appropriate for restoring.

% invert ... beam=xxx.bm options=systemp,double,mosaic imsize=129,129 cell=1,1

% mospsf in=xxx.bm ...

% imfit in=xxx.bm object=beam

% mossdi ...

or

% mosmem ...

% restor ... fwhm=8,6 pa=40

TODO: needs more explanation

Even for a single pointing observation, your beam (dataset xxx.bm in the example) will currently contain
3 maps (i.e. an image cube). The first plane is mostl likely the OVRO-OVRO beam, followed by the
OVRO-BIMA beam, and finally the BIMA=BIMA beam.

It is also important to set the area to be cleaned carefully. Use a mosaic sensitivity map (see the task
mossen) and use something like a 1.5σ cutoff. The mask thus generated can be copied into the cube to
be cleaned.

14The future CARMA array with the additional SZA 8 antennae will thus have 6 different baseline types that contribute
to a different primary beam

6-22 CHAPTER 6. WORK FLOW

6.7.2 Weights in mapping

There are several options in invert to weigh your visibilities to optimize resolution vs. sensitivity:

• sup= sidelob suprression area (arcsec); 0 means natural, the default is uniform if not supplied.

• fwhm= gaussian taper in image domain, given in arcsec. This is effectively a smoothing in the
image plane. In AIPS this is normally given in the UV plane, in kλ:

θxy =
182

θuv

• robust= Brigg’s weighting scheme (-big means none, +2 means natural)

In addition some of the options also control the weighting, in particular options=systemp. The current
version of MIRIAD can only include the system temperatures into the weighting scheme, but for antennas
that have bad gains (e.g. pointing errors) it could be useful to fold in the antenna gain.

One scheme to include the gains in the systemp weighting using this command:

% puthd in=$phcalfile/senmodel value=GSV type=ascii

This variable is normally set by MFCAL or GPCAL15 but these are not commonly used for gain cali-
bration at CARMA, and in any case defsmodl only sets gain-scaled variance for ATCA data. Setting
GSV causes uvdat to include the gains in the variance calculation. gpcopy then copies the senmodel

parameter to the source data.

In order for this to work, one should NOT apply the gains before running invert (though one can and
should apply the passband).

It would also be possible to fold in the gains into the systemps, or modify jyperk, since the variance is
calculated as follows:

(Jy/K)2T1T2

2∆ν∆T
where

Jy

K
=

2k

ηA

for aperture efficiency η and aperture A. There is currently no option in MIRIAD programs to include
the gains directly.

6.7.3 Channel averaging in invert

A perhaps not so well known shortcoming of mapping with invert is that MIRIAD tasks that depend
on noise variances computes that variance based on the first channel that is retrieved. When in early
2010 band 4 was introduced with a much larger number of channels, instead of the COBRA 15 channel
500 MHz windows, this caused the naive approach to produce maps with inferior noise characteristics.

A work-around is to pre-process the data using uvcal options=avechan at the time of applying the
bandpass calibration. This also has the added advantage that flagged channel data are re-averaged in
new wide-band data. The phase calibration and mapping will then take place using the wide-band data.
Mapping can optionally take place via options=mfs and properly combine the LSB and USB to account
for the different beamshapes at the different frequencies.

% mfcal vis=bp_mir

% gpcopy bp_mir -> gc_mir

% uvcal gc_mir -> gcb_mir options=avechan,nocal

15see $MIRSUBS/defsmodl.for

6.8. TIPS AND TRICKS 6-23

6.8 Tips and Tricks

• In selfcal style applications (selfcal, mfcal, gmake) the reference antenna refant= should be choosen
somewhat centrally in the array.

• In the selection of a pgplot graphics device for X11 it is recommended to use the persistent driver
(device=1/xs, device=2/xs,), which allows for as screens as you want or your screen can handle.

6-24 CHAPTER 6. WORK FLOW

Chapter 7

Recipes

7.1 Calibration

7.1.1 Calibration-1

Simple calibration with a single correlator setting through all sources. A passband and phase (amplitude)
calibrator is used in addition to the source of interest. useful for continuum and simple line observations
in e.g. a 32 MHz window. There is also no need for NOISE source.

set vis=ct002blabla # the observed multi-source dataset from CARMA archive

set bcal=3c273 # bandpass calibrator

set pcal=3c454 # phase calibrator

set src=ngc1234 # your source

create and inspect an (antenna based) bandpass solution

mfcal vis=$vis select="source($bcal)"

gpplt vis=$vis

apply, take out autocorrelations, selfcal does not handle them

uvcat vis=$vis out=$vis.bp select=-auto

create and inspect phase and amp calibrator, assuming we trust the flux

selfcal vis=$vis.bp select="source($pcal)" options=amp,apriori,noscale

gpplt vis=$vis.bp

map and deconvolve the source

invert vis=$vis.bp select="source($src)" map=map0 beam=beam0 options=mosaic

...

One can even imagine a more compact form, of combining the bandpass and phase calibrator:

set vis=ct002blabla # the observed multi-source dataset from CARMA archive

set cal=3c273 # bandpass and phase calibrator

set src=ngc1234 # your source

create and inspect an (antenna based) bandpass solution

mfcal vis=$vis select="-auto,source($cal)" interval=5

gpplt vis=$vis options=bandpass

inspect

uvplot ...

uvspec ...

7-1

7-2 CHAPTER 7. RECIPES

map and deconvolve the source

invert vis=$vis select="source($src)" map=map0 beam=beam0 options=mosaic

...

7.1.2 Calibration-2

Narrow band (line) calibration in 2 or 8 MHz, with the NOISE source.

set archive=c0117.1B_225Arp220.1.miriad

set vis=vis2

set cal=cal1

set win=4,5

set refant=11

set flag=1

set linecal=1

set baseline=1

set show=0

set mosaic=1

set cont=0

set bpinterval=0.1

set cell=0.1

foreach cmdlinearg ($*)

set $cmdlinearg

end

select out the sources; from listobs’ output we also get their purpose

#Source Purpose RA Decl

#NOISE B 12 29 06.70 2 03 08.60 0.00E+00 0.0

#3C273 B 12 29 06.70 2 03 08.60 0.00E+00 0.0

#3C345 G 16 42 58.81 39 48 36.99 0.00E+00 0.0

#ARP220 S 15 34 57.34 23 30 05.50 0.00E+00 0.0

if (! -d $archive) then

carmadata -x $archive

endif

get data from archive

rm -rf vis0

cp -a $archive vis0

patch the frequency, but note it’s a funny co(2-1) that makes the galaxy at VLSR=0

puthd

or

uvputhd vis= out= hdvar=restfreq varval=226.42200

puthd in=vis0/restfreq value=226.42200 type=double

flag data

if ($flag) then

7.1. CALIBRATION 7-3

C8 has terrible systemps (it’s actually never present in the sky data :-)

uvflag vis=vis0 select="ant(8)" flagval=flag

flag all ants after 1720

uvflag vis=vis0 select="time(17:20,19:00)" flagval=flag

ant9 is really bad after 16:00 already

uvflag vis=vis0 select="ant(9),time(16:00,19:00)" flagval=flag

endif

linelength calibration

rm -r vis1

if ($linecal) then

linecal vis=vis0

uvcat vis=vis0 out=vis1

else

uvcat vis=vis0 out=vis1

endif

baseline corrections

rm -r vis2

if ($baseline) then

uvedit vis=vis1 out=vis2 apfile=$MIRCAT/baselines/carma/antpos.071121

else

uvcat vis=vis1 out=vis2

endif

rm -rf noise cal1 cal2 src

uvcat vis=$vis select="-auto,source(noise)" out=noise

uvcat vis=$vis select="-auto,source(3C273)" out=cal1

uvcat vis=$vis select="-auto,source(3C345)" out=cal2

uvcat vis=$vis select="-auto,source(ARP220)" out=src

inspect passband calibrator

uvspec vis=cal1 device=1/xs interval=999 nxy=5,3 axis=channel,phase

uvspec vis=cal1 device=1/xs interval=999 nxy=5,3 axis=channel,amp

and in vel space... notice with uvlist-spectra, do we need to patch?

uvspec vis=cal1 device=1/xs interval=999 nxy=5,3 axis=velocity,amp "select=win(4,5,6)"

inspect phase calibrator

uvplt vis=cal2 device=/xs axis=time,phase "select=win($win)"

uvplt vis=cal2 device=/xs axis=time,amp "select=win($win)"

inspect amps of source, didn’t see any bad points

uvplt vis=src device=/xs axis=time,amp "select=win($win)"

make passband; use short interval, especially for 1mm (default is 5min)

can even go as low as 10sec if you have enough signal

mfcal vis=cal1 "select=win($win)" refant=$refant interval=$bpinterval

and inspect

gpplt vis=cal1 device=/xs yaxis=amp nxy=5,3 options=band yrange=0,2

gpplt vis=cal1 device=/xs yaxis=phase nxy=5,3 options=band

stuff it in the phase cal

gpcopy vis=cal1 out=cal2 options=nopol,nocal

uvcat vis=cal2 out=cal3

rm -rf cal2

7-4 CHAPTER 7. RECIPES

mv cal3 cal2

make gain calibrator

selfcal vis=cal2 options=amp,apriori,noscale "select=win($win)" refant=$refant

and inspect

gpplt vis=cal2 device=/xs yaxis=phase nxy=5,3

gpplt vis=cal2 device=/xs yaxis=amp nxy=5,3

copy gain tables to the source

gpcopy vis=cal1 out=src options=nopol,nocal

gpcopy vis=cal2 out=src options=nopol,nopass

map the source

rm -rf map0 beam0 beam0psf cc0 cm0

invert vis=src map=map0 beam=beam0 select="win($win)" options=mosaic,double,systemp imsize=513 cell=$cell

mossdi map=map0 beam=beam0 out=cc0 region=@arp220-clean.reg > mossdi.log

mospsf beam=beam0 out=beam0psf

imfit in=beam0psf object=beam region=quarter > imfit.log

set bmaj = ‘grep Major imfit.log | tail -1 | awk ’{print $4}’‘

set bmin = ‘grep Minor imfit.log | tail -1 | awk ’{print $4}’‘

set bpa = ‘grep Position imfit.log | tail -1 | awk ’{print $4}’‘

restor map=map0 beam=beam0 model=cc0 out=cm0 fwhm=$bmaj,$bmin pa=$bpa

After this the

#

if ($cont) then

called with win=1,2 cont=1

rm -rf cont

moment in=cm0 out=cont mom=-1

else

called with win=4,5 cont=0

echo CONTSUBS cannot do this yet

rm -rf cm0cont cm0line

replicate in=cont template=cm0 out=cm0cont

maths exp=cm0-cm0cont out=cm0line

#

cgdisp type=c in=cm0line "region=arcsec,box(-5,0,5,10)" nxy=6,6 slev=p,1 levs1=10,20,30

endif

7.1.3 Calibration-3

Switch correlator setup, with phase transfer.

7.1.4 gmake/gfiddle

Douglas Friedel wrote a script to split a dataset and runs gmakes/gfiddle on its parts. There are
currently some issues with using these old BIMA g-routines. This will be looked into

The basic procedure is to get a dataset with two sidebands. Depending on your correllator setting you
can use the line= and select= keywords in gmakes to get those:

gmakes vis=cal1 out=gvis1 line=wide,2,1,3,3

7.2. BANDPASS CALIBRATION 7-5

gfiddle vis=gvis1 out=gvis2 device=/xs nxy=5 fit=poly,0,2 clip=10

gapply vis=cal1 out=gcal1 gvis=gvis2

after which you can check the gain and phase corrected calibrator for any more problems.

Now these gains can be applied to the source, after which it can be mapped.

gapply vis=src out=gsrc gvis=gvis2

7.2 Bandpass calibration

The script below, bandcal.csh, is a working example how Jin Koda’s M51 data can be passband cali-
brated. Courtesy Stuart Vogel.

1: #! /bin/csh -f

2: #

3: # 1. Uses noise source for narrow-band channel to channel bandpass calibration

4: # Conjugate LSB for USB

5: # 2. Uses astronomical source for wideband and low-order polynomical narrow-

6: # band passband calibration

7: # 3. Uses hybrid mode data for band-offset phase calibration

8: # 4. Generates temporal phase calibration from phase calibrator using

9: # super-wideband (average of all three bands from both sidebands)

10: # 5. Applies calibrations to each of the source data bands

11: # 6. Glues source bands back together

12: # 7. Flags bad channels in overlap region between bands.

13:

14: # Assumes that a relatively bright quasar has been observed in the following

15: # modes:

16: # 1. 500/500/500

17: # 2. nb / nb/ nb nb=narrowband

18: # 3. With 2 bands in narrowband and the other in 500. aka "hybrid" mode

19: # Note - easy mod to script to use 1 band in nb, others in hybrid.

20: #

21: # SNV 2/18/2007

22:

23: # Assumes data properly flagged so that self cal solutions are good!!

24: # Make sure refant is a good choice!

25:

26: # To-do list:

27: # 1. this script assumes just one visibility calibrator

28:

29: # User parameters

30:

31: set vis = c0064.jk_m51co_c.4.miriad # visibility file

32: set refant=9 # reference antenna

33: set cal = 3C279 # passband calibrator

34: set viscal = 1153+495 # visibility calibrator

35: set source = M51MOS # source

36: set nb_array = (4 5 6) # spectral line bands to calibrate

37: set wide_array = (5 6 5) # hybrid band with wide setup

38: # For each element in nb_array, the

39: # corresponding element in wide_array

40: # should be the hybrid band that is wideband

41: set superwidewin = "2,3,5,6" # windows to use for super-wideband

42: set superwidechan = "1,1,60" # Channels for superwide

43: set bw = 64 # Spectral Line bandwidth

44: set wideline = "1,3,11,11" # line type for 500 MHz

45: set narrowline = "1,3,58,58" # line type for narrow band

46: set sideband = "usb" # Sideband (used for noise conjugation)

47: set calint = 0.2 # passband calibration interval (minutes)

48: set vcalint = 42 # visibility calibrator cal interval

49: set order = 1 # polynomial order for smamfcal fit

50: set edge = 3 # # of edge channels to discard in smamfcal

7-6 CHAPTER 7. RECIPES

51: set badants = "2,3,5" # bad antennas to flag

52: # Do heavy uvflagging prior to script

53: set badchan1 = "6,61,1,1" # bad overlap channels between 1st 2 bands

54: set badchan2 = "6,124,1,1" # bad overlap channels between 2nd 2 bands

55: set restfreq = 115.271203 # rest frequency of line

56:

57: # End user parameters

58:

59: uvflag vis=$vis select=anten’(’$badants’)’ flagval=flag

60:

61: rm -rf all.wide all.nb

62: rm -rf $cal.wide* $cal.nb* $cal.hyb*

63:

64: # Select all-wideband and all-narrowband data

65: bwsel vis=$vis bw=500,500,500 nspect=6 out=all.wide

66: bwsel vis=$vis bw=$bw,$bw,$bw nspect=6 out=all.nb

67:

68: # First get super-wideband on passband calibrator and phase calibrator

69: rm -r $cal.wide $cal.wide.0 $viscal.v.wide $viscal.v.wide.0

70: uvcat vis=all.wide out=$cal.wide.0 \

71: "select=-auto,source($cal)" options=nocal,nopass

72: uvcat vis=all.wide out=$viscal.v.wide.0 \

73: "select=-auto,source($viscal)" options=nocal,nopass

74:

75: # mfcal passband on superwideband

76: # Don’t bother using noise source for superwideband

77: mfcal vis=$cal.wide.0 interval=$calint refant=$refant

78: echo "**** Plot super-wideband passband on $cal.wide.0 "

79: gpplt vis=$cal.wide.0 options=bandpass yaxis=phase nxy=4,4 yrange=-360,360 device=bp$cal.wide.0.ps/ps

80: gv bp$cal.wide.0.ps

81:

82: # Inspect temporal phase variation on superwideband

83: echo "**** Check temporal phase variations on superwideband $cal.wide.0 "

84: gpplt vis=$cal.wide.0 yaxis=phase yrange=-360,360 nxy=4,4 device=p$cal.wide.0.ps/ps

85: gv p$cal.wide.0.ps

86:

87: # Apply superwideband passband for later use in band offset cal

88: uvcat vis=$cal.wide.0 out=$cal.wide options=nocal

89:

90: # Copy wideband passband to visibility calibrator

91: gpcopy vis=$cal.wide.0 out=$viscal.v.wide.0 options=nocal,nopol

92: uvcat vis=$viscal.v.wide.0 out=$viscal.v.wide options=nocal

93:

94: # Determine phase gain variations on visibility calibrator using superwide

95: rm -r $viscal.v.wide.sw

96: uvcat vis=$viscal.v.wide out=$viscal.v.wide.sw select=’win(’$superwidewin’)’

97: selfcal vis=$viscal.v.wide.sw line=channel,$superwidechan \

98: interval=$vcalint options=phase refant=$refant

99: echo "**** Phases on the superwideband visibility calibrator $viscal.v.wide.sw"

100: gpplt vis=$viscal.v.wide.sw device=p$viscal.v.wide.sw.ps/ps yaxis=phase yrange=-360,360 nxy=4,4

101: gv p$viscal.v.wide.sw.ps

102:

103: # LOOP OVER EACH NARROW BAND

104:

105: set nblength = $#nb_array

106: if $nblength == 1 set list = 1

107: if $nblength == 2 set list = (1 2)

108: if $nblength == 3 set list = (1 2 3)

109:

110: foreach i ($list)

111:

112: set nb = $nb_array[$i]

113: set wide = $wide_array[$i]

114: rm -r all.hyb

115:

116: # Select hybrid data

117: # NB: assumes only 1 band is in wideband mode; if two bands are in wideband

118: # mode, change hybrid selection to select on nb and modify bw=

119: if ($wide == 1 || $wide == 4) then

120: if ($nb == 2 || $nb == 5) then

7.2. BANDPASS CALIBRATION 7-7

121: bwsel vis=$vis nspect=6 bw=500,$bw,0 out=all.hyb

122: else

123: bwsel vis=$vis nspect=6 bw=500,0,$bw out=all.hyb

124: endif

125: endif

126: if ($wide == 2 || $wide == 5) then

127: if ($nb == 1 || $nb == 4) then

128: bwsel vis=$vis nspect=6 bw=$bw,500,0 out=all.hyb

129: else

130: bwsel vis=$vis nspect=6 bw=0,500,$bw out=all.hyb

131: endif

132: endif

133: if ($wide == 3 || $wide == 6) then

134: if ($nb == 1 || $nb == 4) then

135: bwsel vis=$vis nspect=6 bw=$bw,0,500 out=all.hyb

136: else

137: bwsel vis=$vis nspect=6 bw=0,$bw,500 out=all.hyb

138: endif

139: endif

140: set test = ‘uvio vis=all.hyb | grep -i source | awk ’{if (NR==1) print $4}’‘

141: if ($test == "") then

142: echo

143: echo "FATAL! There appears to be no valid data in all.hyb"

144: echo "This is likely to be because wide_array[$i] = $wide is not valid"

145: echo "(i.e. band $wide is not really wideband), or one of the other "

146: echo "bands is not really narrowband. Use uvindex to sort this out"

147: exit

148: endif

149:

150: echo "**** Be sure that bands are found by inspecting uvlist output!"

151: echo "**** If no frequency info is found, that bwsel parameters are wrong"

152: uvlist vis=all.hyb options=spectra

153:

154: # Now we need to select single bands to process in this pass

155: # Select by source and band

156: # First get the two bands in all-wideband mode

157: # Note that we use super-wideband calibrated file for the wide mode

158: rm -rf $cal.win$nb* $cal.win$wide* $cal.wide.win$wide* $cal.wide.win$nb*

159: rm -rf $cal.hyb.win$nb* $cal.hyb.win$wide* noise.nb.win$nb*

160: uvcat vis=$cal.wide out=$cal.wide.win$wide "select=-auto,source($cal),win($wide)" \

161: options=nocal,nopass

162: uvcat vis=$cal.wide out=$cal.wide.win$nb "select=-auto,source($cal),win($nb)" \

163: options=nocal,nopass

164:

165: # Now select hybrid wideband band

166: uvcat vis=all.hyb out=$cal.hyb.win$wide.0 "select=-auto,source($cal),win($wide)" \

167: options=nocal,nopass

168: # Now select the hybrid and all-narrowband narrow bands

169: # nb bands require extra step (applying noise source)

170: # we did not bother with noise source for wideband

171: uvcat vis=all.hyb out=$cal.hyb.win$nb.00 "select=-auto,source($cal),win($nb)" \

172: options=nocal,nopass

173: uvcat vis=all.nb out=$cal.nb.win$nb.00 "select=-auto,source($cal),win($nb)" \

174: options=nocal,nopass

175:

176: # copy wideband passband determined from all-wideband mode to hybrid wideband

177: gpcopy vis=$cal.wide.0 out=$cal.hyb.win$wide.0 options=nocal,nopol

178: uvcat vis=$cal.hyb.win$wide.0 out=$cal.hyb.win$wide options=nocal

179:

180: # get the noise source data. Use the noise source data obtained in all

181: # narrowband mode, and assume it also can be applied to hybrid narrowband

182:

183: if ($sideband == "USB" || $sideband == "usb") then

184: echo " **** PROCESSING USB"

185: rm -r noise.lsb noise.usb

186: @ lsbnb = $nb - 3

187: uvcat vis=all.nb out=noise.lsb "select=-auto,source(NOISE),win($lsbnb)" \

188: options=nocal,nopass

189: uvcat vis=all.nb out=noise.usb "select=-auto,source(NOISE),win($nb)" \

190: options=nocal,nopass

7-8 CHAPTER 7. RECIPES

191: set sdf = ‘uvio vis=noise.usb | grep sdf | grep DATA | awk ’{print $5}’‘

192: set sfreq = ‘uvio vis=noise.usb | grep sfreq | grep DATA | awk ’{if (NR==1) print $5}’‘

193: uvcal vis=noise.lsb out=noise.nb.win$nb.00 options=conjugate

194: puthd in=noise.nb.win$nb.00/sfreq value=$sfreq type=d

195: puthd in=noise.nb.win$nb.00/sdf value=$sdf type=d

196: else

197: uvcat vis=all.nb out=noise.nb.win$nb.00 "select=-auto,source(NOISE),win($nb)" \

198: options=nocal,nopass

199: endif

200:

201: # For narrowband windows, first do a passband cal using noise source

202: mfcal vis=noise.nb.win$nb.00 refant=$refant

203: echo "**** Passband cal using noise source"

204: gpplt vis=noise.nb.win$nb.00 device=bpnoise.nb.win$nb.00.ps/ps options=bandpass yaxis=phase nxy=4,4 \

205: yrange=-90,90

206: gv bpnoise.nb.win$nb.00.ps

207:

208: # Copy noise passband to astronomical all-narrowband and hybrid narrowbands,

209: # and apply

210: gpcopy vis=noise.nb.win$nb.00 out=$cal.nb.win$nb.00 options=nocal,nopol

211: gpcopy vis=noise.nb.win$nb.00 out=$cal.hyb.win$nb.00 options=nocal,nopol

212: uvcat vis=$cal.nb.win$nb.00 out=$cal.nb.win$nb.0 options=nocal

213: uvcat vis=$cal.hyb.win$nb.00 out=$cal.hyb.win$nb.0 options=nocal

214:

215: # use smamfcal with 1st order polynomial to

216: # get passband on hybrid narrowband and copy to all narrowband

217: smamfcal vis=$cal.hyb.win$nb.0 interval=$calint refant=$refant edge=$edge options=opolyfit \

218: polyfit=$order

219: echo "**** Hybrid narrowband passband on $cal.hyb.win$nb.0 "

220: gpplt vis=$cal.hyb.win$nb.0 options=bandpass yaxis=phase nxy=4,4 yrange=-90,90 \

221: device=bp$cal.hyb.win$nb.0.ps/ps

222: gv bp$cal.hyb.win$nb.0.ps

223:

224: # Copy narrowband passband from hybrid to all-narrowband mode

225: gpcopy vis=$cal.hyb.win$nb.0 out=$cal.nb.win$nb.0 options=nocal,nopol

226:

227: #Check that all-narrowband passband is flat

228: rm -r test.pass

229: uvcat vis=$cal.nb.win$nb.0 out=test.pass

230: mfcal vis=test.pass refant=$refant

231: echo "**** Narrowband passband (should be flat!) on $cal.hyb.win$nb.0 "

232: gpplt vis=test.pass options=bandpass yaxis=phase nxy=4,4 yrange=-90,90 \

233: device=bptest.ps/ps

234: gv bptest.ps

235:

236: # Apply astronomical narrowband passband to hybrid and all-narrowband

237: uvcat vis=$cal.hyb.win$nb.0 out=$cal.hyb.win$nb options=nocal

238: uvcat vis=$cal.nb.win$nb.0 out=$cal.nb.win$nb options=nocal

239:

240: # Selfcal on hybrid wideband to remove temporal variations

241: # prior to band offset calibration

242: selfcal vis=$cal.hyb.win$wide line=channel,$wideline \

243: interval=$calint options=phase refant=$refant

244:

245: # Copy selfcal solution over to narrow hybrid band and apply

246: copyhd in=$cal.hyb.win$wide out=$cal.hyb.win$nb items=gains,ngains,nsols,interval

247: uvcat vis=$cal.hyb.win$nb out=$cal.hyb.win$nb.a

248:

249: # Selfcal on narrow band of hybrid to determine band offset

250: selfcal vis=$cal.hyb.win$nb.a line=channel,$narrowline \

251: interval=9999 options=phase refant=$refant

252: echo "**** Band offset between hybrid-narrowband $cal.hyb.win$nb.a"

253: echo "**** and hybrid-wideband $cal.hyb.win$nb"

254: gplist vis=$cal.hyb.win$nb.a options=phase

255: # Also copy band offset to text file

256: gplist vis=$cal.hyb.win$nb.a options=phase >! mnband_offset.$cal.hybwin$nb.txt

257:

258: # Test by applying to calibrator observed in all-narrowband mode

259: copyhd in=$cal.hyb.win$nb.a out=$cal.nb.win$nb items=gains,ngains,nsols,interval

260: uvcat vis=$cal.nb.win$nb out=$cal.nb.win$nb.a

7.2. BANDPASS CALIBRATION 7-9

261:

262: # Remove antenna phase gain using super-wideband

263: rm -r $cal.wide.sw

264: uvcat vis=$cal.wide out=$cal.wide.sw select=’win(’$superwidewin’)’

265: selfcal vis=$cal.wide.sw line=channel,$superwidechan \

266: interval=9999 options=phase refant=$refant

267: # Copy super-wideband gain to narrowband and apply

268: copyhd in=$cal.wide.sw out=$cal.nb.win$nb.a items=gains,ngains,nsols,interval

269: uvcat vis=$cal.nb.win$nb.a out=$cal.nb.win$nb.a.sc

270:

271: # Selfcal to check that phases are roughly zero

272: # to within amount expected given temporal variations over interval

273: # between superwideband and all-narrowband observerations

274: selfcal vis=$cal.nb.win$nb.a.sc line=channel,$narrowline \

275: interval=9999 options=phase refant=$refant

276:

277: # List gains, which should be near zero except for temporal variations

278: # over interval between wideband and narrow band observations of cal

279: echo "**** Phase offset between super-wideband $cal.wide.sw "

280: echo "**** and all-narrow narrow band $cal.nb.win$nb.a.sc "

281: echo "**** Check that phases are near zero, limited by atmospheric flucatuations"

282: gplist vis=$cal.nb.win$nb.a.sc options=phase

283:

284: # Now apply calibrations to source data

285: rm -r $source.win$nb* $source.win$nb.bcal

286: # First select source data

287: uvcat vis=all.nb out=$source.win$nb.00 \

288: "select=-auto,source($source),win($nb)" options=nocal,nopass

289: # Copy and apply noise passband to source

290: gpcopy vis=noise.nb.win$nb.00 out=$source.win$nb.00 options=nocal,nopol

291: uvcat vis=$source.win$nb.00 out=$source.win$nb.0 options=nocal

292: # Copy and apply astronomical passband

293: gpcopy vis=$cal.hyb.win$nb.0 out=$source.win$nb.0 options=nocal,nopol

294: uvcat vis=$source.win$nb.0 out=$source.win$nb options=nocal

295: # Copy band offset to source

296: copyhd in=$cal.hyb.win$nb.a out=$source.win$nb items=gains,ngains,nsols,interval

297: rm -r $source.win_$i

298: # Apply band offset using smachunkglue naming convention

299: uvcat vis=$source.win$nb out=$source.win_$i

300:

301: # end nb loop

302: end

303:

304: # glue together 3 bands

305: set nblength = $#nb_array

306:

307:

308: if ($nblength == 2) then

309: set cfile=$source.$nb_array[1]$nb_array[2]

310: rm -r $cfile

311: smachunkglue vis=$source.win nfiles=$nblength out=$cfile

312: uvflag vis=$cfile line=channel,$badchan1 flagval=flag

313: else if ($nblength == 3) then

314: set cfile=$source.$nb_array[1]$nb_array[2]$nb_array[3]

315: rm -r $cfile

316: smachunkglue vis=$source.win nfiles=$nblength out=$cfile

317: # flag bad overlap channels

318: uvflag vis=$cfile line=channel,$badchan1 flagval=flag

319: uvflag vis=$cfile line=channel,$badchan2 flagval=flag

320: else

321: set cfile=$source.$nb_array[1]

322: rm -r $cfile

323: uvcat vis=$source.win out=$cfile

324: endif

325:

326: # put in restfreq

327: puthd in=$cfile/restfreq type=double value=$restfreq

328:

329: # copy super-wideband gains to source

330: copyhd in=$viscal.v.wide.sw out=$cfile items=gains,ngains,nsols,interval

7-10 CHAPTER 7. RECIPES

331:

332: echo "Calibrated source file: $cfile"

7.3 Flux Calibration

7.3.1 Bootstrap Flux Calibration

In this example we will calculate the flux of a phase calibrator using a known flux calibrator. The flux is
assumed from another source (it could be bootstrapped from a planet, or from an external list such as
the SMA list of the CARMA flux table). We will assume we have both calibrators in a triple 500 MHz
correlator mode for maximum sensitivity, and that all data have been flagged appropriately. We will also
assume the phase calibrator is relatively bright to believe the time variance of the gains.

First a few handy definitions so we can shorten the examples:

set fluxcal = 3C84 # flux calibrator (also the miriad dataset name)

set viscal = 0238+166 # phase calibrator (also the miriad dataset name)

set flux = 6.6 # flux of flux calibrator (SMA or Woojin)

set refant = 9 # referance antenna

set calint = 0.2 # passband calibration interval (minutes)

set vcalint = 25 # visibility calibrator scan interval

set fcalint = 1 # flux calibrator interval

set superwidewin = "1,2,4,5" # windows to use for superwide

set superwidechan = "1,1,60" # channels for superwide

set lsbfluxchan = "1,1,30,30" # channels for calc lsb flux

set usbfluxchan = "1,31,30,30" # channels for calc usb flux

A note on setting the flux here. In the example below we do not use options=apriori in selfcal but
instead set the flux value explicitly. Either way should work, but flux calibration tables are sometimes
updated and can give slightly different (supposedly better of course) results.

First we will passband calibrate the flux calibrator. We will use a relatively short interval, to ensure
phase wrapping in time does not wipe out the passband:

mfcal vis=$fluxcal interval=$calint refant=$refant

It is always good to inspect the calibration tables, both in frequency and time:

gpplt vis=$fluxcal options=bandpass yaxis=phase nxy=4,4 yrange=-360,360 device=/xs

gpplt vis=$fluxcal yaxis=phase yrange=-360,360 nxy=4,4 device=/xs

Notice that the first LSB and last USB window (spectral window 3 and 6) are not as well behaved as
the others, and will be left out in the definition of the superwide channel (combining all wide band
windows) .

The passband calibration table is now copied to the visibility calibrator, and a copy is made of this now
passband corrected dataset:

gpcopy vis=$fluxcal out=$viscal options=nocal,nopol

uvcat vis=$viscal out=$viscal.wide options=nocal

Next, the antenna gains are determined from the flux calibrator. First we again make a passband corrected
copy of all the good windows, after which we run an amplitude selfcal with the flux we think we know
this source should have.

7.3. FLUX CALIBRATION 7-11

uvcat vis=$fluxcal out=$fluxcal.gain options=nocal "select=win($superwidewin)"

selfcal vis=$fluxcal.gain refant=$refant interval=$fcalint "select=source($fluxcal)" \

options=noscale,amplitude flux=$flux

gplist vis=$fluxcal.gain options=zeropha,amp > $fluxcal.gains

...

--

Means: 1.39 0.98 1.04 1.14 0.00 1.10 1.08 1.29 1.17 1.38 1.44 1.09 1.33 1.35 1.26

Medians: 1.36 0.98 1.04 1.13 0.00 1.09 1.09 1.29 1.17 1.38 1.44 1.08 1.32 1.33 1.26

Rms: 0.09 0.03 0.03 0.07 0.00 0.02 0.03 0.02 0.05 0.04 0.04 0.03 0.04 0.05 0.03

--

Since we will need these gain factors later on, a little Unix pipe will grab the medians into a file:

grep Medians $fluxcal.gains | tr -d Medians: > $fluxcal.medians

cat $fluxcal.medians

1.36 0.98 1.04 1.13 0.00 1.09 1.09 1.29 1.17 1.38 1.44 1.08 1.32 1.33 1.26

Next the phase of the phase calibrator should be straightened out, and we use a phase-only selfcal with
a fairly long integration time for this

uvcat vis=$viscal.wide out=$viscal.sw "select=win($superwidewin)"

selfcal vis=$viscal.sw line=channel,$superwidechan interval=$vcalint options=phase refant=$refant

Now the amplitude gains derived from the flux calibrator, can be applied to the phase calibrator, by
replacing the amplitudes, and keeping the phases from the just determined selfcal solution:

gplist vis=$viscal.sw options=replace jyperk=@$fluxcal.medians

A special program, uvflux, can now be used to gather some statistics on this phase calibrator. Since
the calibrator is assumed to be a point source, all amplitudes should be the same (you could check this
with e.g. uvplt axis=uvd,amp), and thus report the flux (6.18 Jy ± 2.59 for both LSB and USB in this
example).

uvflux vis=$viscal.sw options=nopol line=chan,$lsbfluxchan

uvflux vis=$viscal.sw options=nopol line=chan,$usbfluxchan

uvflux vis=$viscal.sw options=nopol > $viscal.flux

--

Source Pol Theoretic Vector Average RMS Average RMS Amp Number

RMS (real,imag) Scatter Amp Scatter Corrs

------ --- -------- -------------------- ------- --------- -------- ------

0238+166 RR 1.3E+00 5.157E+00 -3.838E-03 3.0E+00 6.180E+00 2.59E+00 1935180

--

Finally, checking the time variance of the phase calibrator

uvcat vis=$viscal.wide out=$viscal.wide.gain "select=win($superwidewin)"

selfcal vis=$viscal.wide.gain refant=$refant interval=$vcalint "select=source($viscal)" \

options=noscale,amplitude flux=$visflux

gplist vis=$viscal.wide.gain options=zeropha,amp > $viscal.gains

Time Ant 1 Ant 2 Ant 3 Ant 4 Ant 5 Ant 6 Ant 7 Ant 8 Ant 9 Ant10 Ant11 Ant12 Ant13 Ant14 Ant15

19:11:10 1.33 0.99 1.01 1.07 0.00 1.07 1.10 1.34 1.19 1.39 1.48 1.06 1.28 1.37 1.24

19:13:34 1.34 0.98 1.05 1.06 0.00 1.06 1.09 1.36 1.21 1.40 1.48 1.06 1.28 1.35 1.28

19:40:47 1.41 1.01 1.01 1.12 0.00 1.07 1.10 1.45 1.23 1.40 1.53 1.08 1.32 1.45 1.31

7-12 CHAPTER 7. RECIPES

20:09:41 1.36 0.98 1.05 1.12 0.00 1.12 1.19 1.58 1.28 1.44 1.68 1.09 1.38 1.47 1.39

20:42:34 1.44 0.98 1.05 1.19 0.00 1.12 1.11 1.66 1.31 1.53 1.75 1.14 1.44 1.51 1.42

20:53:42 1.50 0.95 1.03 1.14 0.00 1.09 1.07 1.63 1.29 1.56 1.78 1.15 1.42 1.54 1.41

21:22:06 1.38 1.01 1.05 1.15 0.00 1.07 1.16 1.67 1.32 1.63 1.75 1.16 1.37 1.54 1.40

21:51:16 1.41 0.99 1.05 1.10 0.00 1.06 1.11 1.67 1.39 1.60 1.74 1.14 1.37 1.50 1.43

22:21:57 1.45 1.04 1.09 1.15 0.00 1.09 1.14 1.71 1.51 1.64 1.76 1.16 1.40 1.57 1.50

22:34:31 1.54 1.05 1.07 1.14 0.00 1.07 1.10 1.70 1.48 1.56 1.65 1.15 1.39 1.55 1.47

23:02:50 1.47 1.04 1.06 1.08 0.00 1.05 1.14 1.85 1.61 1.64 1.74 0.00 1.46 1.57 1.55

23:31:26 1.56 1.10 1.07 1.17 0.00 1.09 1.22 2.21 1.72 1.70 1.90 1.25 1.52 1.65 1.64

00:00:10 1.50 1.09 1.03 1.13 0.00 1.06 1.41 4.50 1.86 1.72 1.91 1.28 1.55 1.61 1.60

--

Means: 1.44 1.02 1.05 1.13 0.00 1.08 1.15 1.87 1.42 1.55 1.70 1.14 1.40 1.51 1.43

Medians: 1.41 0.99 1.05 1.12 0.00 1.07 1.11 1.66 1.31 1.56 1.74 1.14 1.38 1.51 1.41

Rms: 0.07 0.05 0.02 0.04 0.00 0.02 0.09 0.82 0.21 0.11 0.14 0.07 0.08 0.09 0.12

--

7.4 Mosaiced Mapping and Deconvolution

Just make sure you have a good set of CPUs!

7.5. SIMPLE REDUCTION 7-13

7.5 Simple Reduction

7.5.1 Simple Reduction - I

1: #! /bin/csh -f

2: #

3: # 3/7/07

4: #

5: # Script to reduce CARMA OPHB11 data

6: # -- using 2 calibrators:

7: # offsetcal to calibrate offset in phase b/w wide and narrow band

8: # cal to calibrate phases

9: #

10: # pre-work:

11: # set vis=c0014.OphB11_C.1.miriad

12: # carmadata $vis.tar.gz

13: # puthd in=$vis/restfreq value=115.271204 type=double

14: # uvcat vis=$vis out=1751+096W.raw ’select=source(1751+096),-auto,time(11:29:00,11:38:20)’

15: # uvcat vis=$vis out=1751+096N.raw ’select=source(1751+096),-auto,time(11:08:00,11:30:00)’

16: # uvcat vis=$vis out=1625-254.raw ’select=source(1625-254),-auto’

17: # uvcat vis=$vis out=ophb11.raw ’select=source(ophb11),-auto’

18:

19: umask 002

20:

21: set task=flag # task to perform

22: set vis==c0014.OphB11_C.1.miriad # base project vis file

23: set offsetcal=1751+096 # calibrator for phase offset b/w Wide and Narr. bands

24: set cal=1625-254 # primary phase cal name

25: set source=ophb11 # source name

26: set refant=8 # refant for selfcal

27: set interval=25 # interval for selfcal

28: set scselect= # select for selfcal on phase cal

29: set nxy=3,3 # number of windows for plotting

30: set flux=1.6

31:

32: set ointerval=9999 # interval for offset cal selfcal

33: set olinecal=chan,1,46,45,45

34: set linenarrow=chan,1,109,63,63

35: set axis=time,phase

36:

37: set line=

38:

39: set dev=1/xs # plotting device

40: set select= # select for uvplt

41: set options= # options for uvplt

42:

43: set cutoff=

44:

45: foreach _arg ($*)

46: set $_arg

47: end

48:

49: goto $task

50:

51: logs:

52: listobs vis=

53:

54:

55: renewoffset:

56:

57: # Secondary Calibrator split into files with with differen correlator configs:

58: rm -rf "$offsetcal"N.red

59: cp -r "$offsetcal"N.raw "$offsetcal"N.red

60: rm -rf "$offsetcal"W.red

61: cp -r "$offsetcal"W.raw "$offsetcal"W.red

62:

63: flagoff:

64: uvplt vis="$offsetcal"W.red device=$dev \

7-14 CHAPTER 7. RECIPES

65: nxy=$nxy select=$select options=$options axis=$axis

66:

67: uvplt vis="$offsetcal"N.red device=$dev \

68: nxy=$nxy select=$select options=$options axis=$axis

69:

70: exit 0

71:

72: selfoff:

73:

74: # if applying BP cal to 1751, also apply to sec phase, and to source, depending on

75: # window ...

76: #

77: # or just include USB (calibrating Wide band) :

78:

79: selfcal vis="$offsetcal"W.red refant=$refant \

80: line=$olinecal options=noscale interval=$ointerval

81:

82: gpplt vis="$offsetcal"W.red yaxis=phase yrange=-180,180 \

83: device=$dev nxy=$nxy options=w

84:

85: # Apply Wide Band calibration to Narrow Band:

86: gpcopy vis="$offsetcal"W.red out="$offsetcal"N.red mode=copy options=nopass

87:

88: rm -rf "$offsetcal"Nref.red

89: uvcat vis="$offsetcal"N.red out="$offsetcal"Nref.red

90:

91: # Another selfcal to get offset between Wide and Narrow bands:

92: selfcal vis="$offsetcal"Nref.red refant=$refant select=$select \

93: line=$linenarrow options=phase interval=$ointerval

94:

95: gpplt vis="$offsetcal"Nref.red yaxis=phase yrange=-180,180 \

96: device=$dev nxy=$nxy options=w

97:

98: exit 0

99: renew:

100: # CAREFUL: This will erase $cal.red to start from scratch

101: # uvcat vis=c0014.OphB11_C.1.miriad select=source(1625-254),-auto out=1625-254.raw

102:

103: rm -rf $cal.red

104: cp -r $cal.raw $cal.red

105:

106: flag:

107: uvplt vis=$cal.red device=$dev line= \

108: nxy=$nxy select=$select options=$options

109:

110: #---Flag data here---

111: exit 0

112:

113: selfcal:

114:

115: #selfcal phase calibrator

116:

117: selfcal vis="$cal".red flux=$flux refant=$refant select=$scselect options=amp,apriori,noscale interval=$interval

118:

119: gpplt:

120: gpplt vis="$cal".red yaxis=phase yrange=-180,180 \

121: device=$dev nxy=$nxy options=w

122:

123: sleep 2

124:

125: rm -rf $cal.dm $cal.bm

126: invert vis="$cal".red map=$cal.dm beam=$cal.bm \

127: imsize=237,237 cell=1,1 line=$olinecal options=systemp select=$scselect

128:

129: rm -rf $cal.cln

130:

131: clean map=$cal.dm beam=$cal.bm niters=10000 out=$cal.cln cutoff=$cutoff

132:

133: rm -rf $cal.restor

134: restor model=$cal.cln map=$cal.dm beam=$cal.bm out=$cal.restor

7.5. SIMPLE REDUCTION 7-15

135:

136: cgdisp in=$cal.restor device=$dev

137:

138: chmod -R 775 $cal.*

139:

140: exit 0

141:

142: renewsource:

143: # CAREFUL: This will erase $source.red to start from scratch

144: # uvcat vis=c0014.OphB11_C.1.miriad select=source(OPHB11),-auto out=ophb11.raw

145: rm -rf $source.red

146: cp -r $source.raw $source.red

147:

148: flagsource:

149: uvplt vis=$source.red device=$dev line=$line \

150: nxy=$nxy select=$select options=$options

151:

152: #---Flag source data here---

153: exit 0

154:

155:

156: invert:

157:

158: # Copy and apply gains table from phase calibrator

159: gpcopy vis="$cal".red/ out=$source.red mode=copy

160:

161: rm -rf "$source"GT.red

162: uvcat vis=$source.red out="$source"GT.red

163:

164: # Copy and apply gains table from offset calibrator (narrow band only)

165: gpcopy vis="$offsetcal"Nref.red out="$source"GT.red mode=copy

166:

167: rm -rf "$source"cal.red

168: uvcat vis="$source"GT.red out="$source"cal.red select=’window(5)’

169:

170: rm -rf $source.dm $source.bm

171: invert vis="$source"cal.red map=$source.dm beam=$source.bm imsize=237,237 \

172: cell=1,1 options=systemp,double,mosaic line=$line sup=0 select=$select

173:

174: #rm -rf $source.cln $source.restor

175: #clean map=$source.dm beam=$source.bm out=$source.cln \

176: # niters=10000 cutoff=$cutoff

177: #minmax in=$source.cln

178: #restor map=$source.dm beam=$source.bm \

179: # model=$source.cln out=$source.restor

180:

181: chmod -R 775 $source.*

182:

7-16 CHAPTER 7. RECIPES

7.5.2 Simple Reduction - II

The example below has been supplied by Alberto, though some administrative details have been left out
to make the example less cluttered. First we define some convenient variables, so we can re-use them in

the script. The rule of thumb should be any number, or certainly multiply occuring text, should be used
in a (shell) variable. That rules is not quite followed in the current example:

set FILE="c0001.n604_coC.1.miriad"

set SRC="NGC604"

set CAL1="0205+322"

set CAL2="0237+288"

set PBCAL="3C454.3"

set NOISE="NOISE"

set FLUX="URANUS"

set WIDE="channel,1,1,15,1"

set LINE="velocity,63,-317.521,2.54,2.54"

set CAL=$CAL2

set OCAL=$CAL1

set RESTFREQ="115.271202"

set REFA=9

Some of variables may be quite obvious, others less. For example, the setting for LINE= less came from
gleaning the output of uvlist:

% uvlist vis=$FILE options=spectra

rest frequency : 115.27120 115.27120 115.27120 115.27120 115.27120 115.27120

starting channel : 1 16 79 142 157 220

number of channels : 15 63 63 15 63 63

starting frequency : 111.47148 111.08239 111.05307 114.93370 115.32280 115.35211

frequency interval : -0.03125 -0.00049 -0.00049 0.03125 0.00049 0.00049

starting velocity : 9854.752 10866.791 10943.046 849.513 -162.527 -238.782

ending velocity : 10992.691 10945.532 11021.788 -288.426 -241.268 -317.523

velocity interval : 81.274 1.270 1.270 -81.274 -1.270 -1.270

First we note that the data set from CARMA is a single miriad dataset that contains all the sources. It
is often , except in the most simple cases, much more convenient to keep track of things if the data is
copied to single-source (or even single-setting) datasets:

foreach i ($SRC $CAL1 $CAL2 $PBCAL $NOISE $FLUX)

uvcat vis=$FILE out=$i select="-auto,source("$i")"

end

It cannot be stressed enough to inspect the data data visually , in as many ways as you can imagine.
Here are just a few examples:

phase vs. time

uvplt vis=$CAL device=/xs line=$WIDE axis=time,phase

amplitude vs. time

uvplt vis=$CAL device=/xs line=$WIDE axis=time,amp

even for the source: it probably be random, unless there are false fringes

or it is a very strong source

uvplt vis=$SRC device=/xs line=$WIDE axis=time,phase

uvspec ...

7.5. SIMPLE REDUCTION 7-17

As a result of this inspection perhaps we found some suspicious data, and it needs to be flagged. This
could be in certain channels and/or time slots. Here is an example to flag a certain time-range for antenna
5:

uvflag vis=$CAL,$PBCAL,$SRC flagval=flag select="ant(5),time(21:30:00,22:15:00)"

First we proceed with (astronomical) passband calibration, to make sure the trends we saw in phase vs.
time are not washed out by passband slopes. Notice we’re compressing the whole time-ranges to get a
single passband shape for all times:

mfcal vis=$PBCAL line="channel,282,1,1,1" interval=999 refant=$REFA

and inspect the result

uvspec vis=$PBCAL axis=chan,phase line="channel,282,1,1,1" device=/xs interval=999 yrange=-180,180

copy the passband from the PBCAL to the CAL

gpcopy vis=$PBCAL out=$CAL options=nocal

Create new dataset with calibration applied, otherwise linetype averaging does not work properly. Use
all wideband channels.

uvcat vis=$CAL out=$CAL.pb select="window(1,4)"

Proceed with amplitude-phase calibration

gpcopy vis=$PBCAL out=$FLUX options=nocal

uvcat vis=$FLUX out=$FLUX.pb select="window(1,4)"

selfcal vis=$FLUX.pb options=apriori,amp,noscale interval=0.1 line="channel,1,1,30,1" refant=$REFA

bootflux vis=$FLUX.pb,$CAL.pb primary=$FLUX line="channel,1,1,30,1" taver=999

Self calibrate the phase calibrator, with passband calibration applied, and imposing the flux found by
bootflux solution

selfcal vis=$CAL.pb line="channel,1,1,30,1" options=amp,noscale,apriori flux=1.2 interval=20 refant=$REFA

Inspect again. Now each channel should have a zero phase

uvspec vis=$CAL.pb axis=chan,phase line="channel,272,1,10,1" device=/xs interval=999 yrange=-180,180

Show time series of selfcalibrated wideband channels:

7-18 CHAPTER 7. RECIPES

uvplt vis=$CAL.pb axis=time,phase device=/xs line="channel,1,16,15,1"

uvplt vis=$CAL.pb axis=time,amp device=/xs line="channel,1,16,15,1"

Or for a phase-only calibration, we self calibrate on the phase calibrator, with passband calibration
applied. Most of the time the online amplitude calibration seems very good... Note that we are averaging
over all wideband channels. Channel linetype averaging does not weigh by bandwidths and/or Tsys. This
is why we split out only the continuum windows.

selfcal vis=$CAL.pb line="channel,1,1,30,1" interval=20 refant=$REFA

Inspect the results, again every channel should have zero phase:

uvspec vis=$CAL.pb axis=chan,phase line="channel,272,1,10,1" device=/xs interval=999 yrange=-180,180

Now show a time series of self calibrated wideband channels:

uvplt vis=$CAL.pb axis=time,phase device=$device line="channel,1,16,15,1"

Now that all calibration is done, it is a good idea to do some sanity checks. Looking at the gain amplitudes
> 1 indicate that the phase calibrator was weaker than expected, perhaps due to pointing errors,

gpplt vis=$CAL.pb device=$device yaxis=amp

The phase gains should be smooth now:

gpplt vis=$CAL.pb device=$device yaxis=phase

Looking at the phase vs time after selfcal, they should be centered around zero:

uvplt vis=$CAL.pb device=$device axis=time,phase line=$WIDE

The phase vs baseline length plot should be inspected to assess atmospheric decorrelation, it should be
flaring at the longer baselines but not overall decline:

uvplt vis=$CAL.pb device=$device line=$WIDE axis=uvdist,phase options=nobase

And finally amplitude vs. time: it should be about was it was set to in the selfcal if an amplitude selfcal
was done:

uvplt vis=$CAL.pb device=$device line=$WIDE axis=time,amp

In the actual example script it now continues mapping the calibrator, and finally a number of the same
set of observations for the source. It can be found in the examples directory as example-blabla.csh.

7.5. SIMPLE REDUCTION 7-19

7.5.3 Hybrid Mode Calibration - III

This example1 originates from Misty Lavigne and Stuart Vogel and uses a dataset taken in hybrid
passband mode in order to calibrate the phase offsets between the different bands. This is often the
case when a single “narrow band” is not able to catch the velocity range of the object of interest, in the
current correlator galaxies appear to be the primary victim of this.

It assumes that a relatively bright quasar has been observed in the following modes:

1. Three 500/500/500 MHz wide bands, currently 15 channels each.

2. Three nb/nb/nb narrowband (BW depends on what you need for your object to fill the spectral
range), currently 63 channels each.

3. Two bands in narrowband and the other in 500. Aka ”hybrid” mode. The procedure below can be
easily modified if one band is narrow, and the others 500.

Some further comments:

1. Uses the noise source for narrow-band channel to channel bandpass calibration. Since the astro-
nomical data is in the USB in this example and the noise source is only in the LSB, it also conjugate
LSB to USB.

2. Uses an astronomical source for wideband and low-order polynomical narrow- band passband cali-
bration

3. Uses hybrid mode data for band-offset phase calibration

4. Generates temporal phase calibration from phase calibrator using super-wideband (average of all
three bands from both sidebands)

5. Applies calibrations to each of the source data bands

6. Glues source bands back together

7. Flags bad channels in overlap region between bands.

There are various other assumptions in the procedure below that almost never apply exactly to your
data. We also assume that the data have been properly flagged and that self cal solutions are good, and
that the reference antenna is a proper choice. The script also assumes only one visibility calibrator.

The script first sets a few parameters, but note that some of these parameters (e.g. superwidechan,
narrowline) depend on the specific correlator mode that was choosen.

set vis = alldata.vis # visibility file

set refant = 10 # reference antenna

set cal = 3C273 # passband calibrator

set viscal = 1058+015 # visibility (phase) calibrator

set fluxcal = 3C273 # flux calibrator

set source = N3627 # source

set nb_array = (4 5 6) # spectral line bands to calibrate

set wide_array = (5 4 5) # hybrid band with wide setup

For each element in nb_array, the

corresponding element in wide_array

should be the hybrid band that is wideband

set superwidewin = 4,5 # windows to use for super-wideband

set superwidechan = 1,1,30 # Channels for superwide

set bw = 64 # Spectral Line bandwidth

1See also CARMA memo “CARMA Hybrid mode” (Lisa Wei, in prep)

7-20 CHAPTER 7. RECIPES

set wideline = 1,3,11,11 # line type for 500 MHz

set narrowline = 1,3,58,58 # line type for narrow band

set sideband = usb # Sideband (used for noise conjugation)

set calint = 0.2 # passband calibration interval (minutes)

set vcalint = 30 # visibility calibrator cal interval

set fcalint = 30 # flux calibrator interval

set ampcalint = 30 # selfcal amplitude interval

set flux = 18 # flux of flux calibrator (SMA or Woojin)

set visflux = 5.1 # flux of vlisibility calibrator, calculated from fluxcal.csh

set order = 1 # polynomial order for smamfcal fit

set edge = 3 # of edge channels to discard in smamfcal

set badants = 2,15 # bad antennas to flag

Do heavy uvflagging prior to script

set badchan1 = 6,61,1,1 # bad overlap channels between 1st 2 bands

set badchan2 = 6,124,1,1 # bad overlap channels between 2nd 2 bands

set restfreq = 115.271203 # rest frequency of line

set gv=ghostview # your postscript viewer

Although you very most likely will have inspected the visibility data and perhaps had to flag bad data
in time, frequency and/or baseline/antennae space, here is a simple example to flag two antennas:

uvflag vis=$vis select=ant’(’$badants’)’ flagval=flag

Select the bands

Select all-wideband and all-narrowband data

rm -rf all.wide all.nb $cal.wide* $cal.nb* $cal.hyb*

bwsel vis=$vis bw=500,500,500 nspect=6 out=all.wide

bwsel vis=$vis bw=$bw,$bw,$bw nspect=6 out=all.nb

First get super-wideband on passband calibrator and phase calibrator

rm -rf $cal.wide $cal.wide.0 $viscal.v.wide $viscal.v.wide.0

uvcat vis=all.wide out=$cal.wide.0 \

"select=-auto,source($cal),win($superwidewin)" options=nocal,nopass

uvcat vis=all.wide out=$cal.wide.1 \

"select=-auto,source($cal)" options=nocal,nopass

uvcat vis=all.wide out=$viscal.v.wide.0 \

"select=-auto,source($viscal)" options=nocal,nopass

Run mfcal on the superwideband (500/500/500) data. Don’t bother using the noise source for the
superwideband. Inspect the antenna based solutions in both frequency and time.

mfcal vis=$cal.wide.0 interval=$calint refant=$refant

Inspect super-wideband passband

gpplt vis=$cal.wide.0 options=bandpass yaxis=phase nxy=4,4 yrange=-360,360 device=bp$cal.wide.0.ps/ps

$gv bp$cal.wide.0.ps

Inspect temporal phase variation on superwideband

gpplt vis=$cal.wide.0 yaxis=phase yrange=-360,360 nxy=4,4 device=p$cal.wide.0.ps/ps

$gv p$cal.wide.0.ps

Apply superwideband passband for later use in band offset cal

gpcopy vis=$cal.wide.0 out=$cal.wide.1

uvcat vis=$cal.wide.1 out=$cal.wide options=nocal

Copy wideband passband to visibility calibrator

gpcopy vis=$cal.wide.0 out=$viscal.v.wide.0 options=nocal,nopol

uvcat vis=$viscal.v.wide.0 out=$viscal.v.wide options=nocal

Determine phase gain variations on visibility calibrator using superwide

rm -rf $viscal.v.wide.sw $viscal.v.wide.sw.test

7.5. SIMPLE REDUCTION 7-21

uvcat vis=$viscal.v.wide out=$viscal.v.wide.sw select=’win(’$superwidewin’)’

uvcat vis=$viscal.v.wide out=$viscal.v.wide.sw.test select=’win(’$superwidewin’)’

selfcal vis=$viscal.v.wide.sw.test interval=0.1 refant=$refant

gpplt vis=$viscal.v.wide.sw.test yaxis=phase yrange=-360,360 device=testphase.ps/ps nxy=4,4

$gv testphase.ps

selfcal vis=$viscal.v.wide.sw line=channel,$superwidechan \

interval=$vcalint options=phase refant=$refant

echo "**** Phases on the superwideband visibility calibrator $viscal.v.wide.sw"

gpplt vis=$viscal.v.wide.sw device=p$viscal.v.wide.sw.ps/ps yaxis=phase yrange=-360,360 nxy=4,4

$gv p$viscal.v.wide.sw.ps

Checking the phase calibrator:does it look like a nice point source. Notice we don’t use mosaicing here,
since it is a point source, though for extended sources you will want to use that option in invert when
the source is mapped.

rm -rf $viscal.v.wide.sw.mp $viscal.v.wide.sw.bm $viscal.v.wide.sw.cl $viscal.v.wide.sw.r

invert vis=$viscal.v.wide.sw cell=0.5 imsize=257 line=chan,$superwidechan \

map=$viscal.v.wide.sw.mp beam=$viscal.v.wide.sw.bm options=system,double sup=0

set rms = ‘histo in=$viscal.v.wide.sw.mp | grep Rms | awk ’{print$4}’‘

clean map=$viscal.v.wide.sw.mp beam=$viscal.v.wide.sw.bm out=$viscal.v.wide.sw.cl \

niters=1000 cutoff=$rms

restor map=$viscal.v.wide.sw.mp beam=$viscal.v.wide.sw.bm model=$viscal.v.wide.sw.cl \

out=$viscal.v.wide.sw.r

cgdisp in=$viscal.v.wide.sw.r,$viscal.v.wide.sw.r nxy=1,1 range=-.5,2,lin,3 \

region=quart device=$viscal.ps/ps cols1=1 \

type=grey,cont slev=p,5 levs1=50,15,10,5,-5 \

options=full,noepoch,beambl csize=1,1 labtyp=arcsec

$gv $viscal.ps

For flux calibration, we offer two methods, depending if the flux calibrator is the same as the passband
calibrator. At the end ask the user if the phasecal gains are acceptable and need to be applied later

if ($cal == $fluxcal) then

rm -r $cal.wide.gain $viscal.v.wide.sw.gain $viscal.v.wide.sw.gain.applied

Calculating Gains on Fluxcal

uvcat vis=$cal.wide.1 out=$cal.wide.gain options=nocal "select=win($superwidewin)"

selfcal vis=$cal.wide.gain refant=$refant interval=$fcalint "select=source($fluxcal)" \

options=noscale,amplitude flux=$flux

gplist vis=$cal.wide.gain options=zeropha,amp > $fluxcal.gains

less $fluxcal.gains

Calculating Gains on Phasecal

uvcat vis=$viscal.v.wide out=$viscal.v.wide.sw.gain select=’win(’$superwidewin’)’

selfcal vis=$viscal.v.wide.sw.gain interval=$vcalint \

refant=$refant options=noscale,amp flux=$visflux

gplist vis=$viscal.v.wide.sw.gain options=zeropha,amp > $viscal.gains

less $viscal.gains

else

rm -r $viscal.v.wide.sw.gain $fluxcal.wide.0 $fluxcal.wide.gain $fluxcal.gains $viscal.gains

Fluxcal different from Pbcal"

uvcat vis=all.wide out=$fluxcal.wide.0 \

"select=-auto,source($fluxcal)" options=nocal,nopass

7-22 CHAPTER 7. RECIPES

Passband correcting Fluxcal"

gpcopy vis=$cal.wide.0 out=$fluxcal.wide.0 options=nocal,nopol

uvcat vis=$fluxcal.wide.0 out=$fluxcal.wide.gain options=nocal "select=win($superwidewin)"

Calculating Gains on Fluxcal

selfcal vis=$fluxcal.wide.gain refant=$refant interval=$fcalint "select=source($fluxcal)" \

options=noscale,amplitude flux=$flux

gplist vis=$fluxcal.wide.gain options=zeropha,amp > $fluxcal.gains

less $fluxcal.gains

Calculating Gains on Phasecal

uvcat vis=$viscal.v.wide out=$viscal.v.wide.sw.gain select=’win(’$superwidewin’)’

selfcal vis=$viscal.v.wide.sw.gain line=channel,$superwidechan \

interval=$vcalint options=phase refant=$refant

selfcal vis=$viscal.v.wide.sw.gain interval=$ampcalint \

refant=$refant options=noscale,amp flux=$visflux

gplist vis=$viscal.v.wide.sw.gain options=zeropha,amp > $viscal.gains

less $viscal.gains

endif

now ask the user if this should be applied later

echo -n "Apply Phasecal Gains to data? (y or n): " ; set apply_gains=$<

Loop over each of the narrow bands and assemble the hybrid data

set nblength = $#nb_array

set list=(‘awk "BEGIN{for(i=1;i<=$nblength;i++)print i}"‘)

start nb loop

foreach i ($list)

set nb = $nb_array[$i]

set wide = $wide_array[$i]

rm -r all.hyb

Select hybrid data

NB: assumes only 1 band is in wideband mode; if two bands are in wideband

mode, change hybrid selection to select on nb and modify bw=

if ($wide == 1 || $wide == 4) then

if ($nb == 2 || $nb == 5) then

bwsel vis=$vis nspect=6 bw=500,$bw,0 out=all.hyb

else

bwsel vis=$vis nspect=6 bw=500,0,$bw out=all.hyb

endif

endif

if ($wide == 2 || $wide == 5) then

if ($nb == 1 || $nb == 4) then

bwsel vis=$vis nspect=6 bw=$bw,500,0 out=all.hyb

else

bwsel vis=$vis nspect=6 bw=0,500,$bw out=all.hyb

endif

endif

if ($wide == 3 || $wide == 6) then

if ($nb == 1 || $nb == 4) then

bwsel vis=$vis nspect=6 bw=$bw,0,500 out=all.hyb

else

bwsel vis=$vis nspect=6 bw=0,$bw,500 out=all.hyb

endif

endif

Two sanity tests to make sure you have data and that the bands are present.

7.5. SIMPLE REDUCTION 7-23

set test = ‘uvio vis=all.hyb | grep -i source | awk ’{if (NR==1) print $4}’‘

if ($test == "") then

echo

echo "FATAL! There appears to be no valid data in all.hyb"

echo "This is likely to be because wide_array[$i] = $wide is not valid"

echo "(i.e. band $wide is not really wideband), or one of the other "

echo "bands is not really narrowband. Use uvindex to sort this out"

exit 1

endif

uvlist vis=all.hyb options=spectra

Now we need to select single bands to process in this pass Select by source and band. First get the two
bands in all-wideband mode Note that we use super-wideband calibrated file for the wide mode.

rm -rf $cal.win$nb* $cal.win$wide* $cal.wide.win$wide* $cal.wide.win$nb*

rm -rf $cal.hyb.win$nb* $cal.hyb.win$wide* noise.nb.win$nb*

uvcat vis=$cal.wide out=$cal.wide.win$wide "select=-auto,source($cal),win($wide)" \

options=nocal,nopass

uvcat vis=$cal.wide out=$cal.wide.win$nb "select=-auto,source($cal),win($nb)" \

options=nocal,nopass

select hybrid wideband band

uvcat vis=all.hyb out=$cal.hyb.win$wide.0 "select=-auto,source($cal),win($wide)" \

options=nocal,nopass

select the hybrid and all-narrowband narrow bands

nb bands require extra step (applying noise source)

we did not bother with noise source for wideband

uvcat vis=all.hyb out=$cal.hyb.win$nb.00 "select=-auto,source($cal),win($nb)" \

options=nocal,nopass

uvcat vis=all.nb out=$cal.nb.win$nb.00 "select=-auto,source($cal),win($nb)" \

options=nocal,nopass

copy wideband passband determined from all-wideband mode to hybrid wideband

gpcopy vis=$cal.wide.0 out=$cal.hyb.win$wide.0 options=nocal,nopol

uvcat vis=$cal.hyb.win$wide.0 out=$cal.hyb.win$wide options=nocal

Now get the noise source data. Use the noise source data obtained in all narrowband mode, and assume
it also can be applied to hybrid narrowband.

if ($sideband == "USB" || $sideband == "usb") then

rm -rf noise.lsb noise.usb

@ lsbnb = $nb - 3

uvcat vis=all.nb out=noise.lsb "select=-auto,source(NOISE),win($lsbnb)" \

options=nocal,nopass

uvcat vis=all.nb out=noise.usb "select=-auto,source(NOISE),win($nb)" \

options=nocal,nopass

set sdf = ‘uvio vis=noise.usb | grep sdf | grep DATA | awk ’{print $5}’‘

set sfreq = ‘uvio vis=noise.usb | grep sfreq | grep DATA | awk ’{if (NR==1) print $5}’‘

uvcal vis=noise.lsb out=noise.nb.win$nb.00 options=conjugate

puthd in=noise.nb.win$nb.00/sfreq value=$sfreq type=d

puthd in=noise.nb.win$nb.00/sdf value=$sdf type=d

else

uvcat vis=all.nb out=noise.nb.win$nb.00 "select=-auto,source(NOISE),win($nb)" \

options=nocal,nopass

endif

For the narrowband windows, first do a passband cal using the noise source

mfcal vis=noise.nb.win$nb.00 refant=$refant

7-24 CHAPTER 7. RECIPES

Passband cal using noise source

gpplt vis=noise.nb.win$nb.00 device=bpnoise.nb.win$nb.00.ps/ps options=bandpass yaxis=phase nxy=4,4 \

yrange=-90,90

$gv bpnoise.nb.win$nb.00.ps

Copy noise passband to astronomical all-narrowband and hybrid narrowbands, and apply

gpcopy vis=noise.nb.win$nb.00 out=$cal.nb.win$nb.00 options=nocal,nopol

gpcopy vis=noise.nb.win$nb.00 out=$cal.hyb.win$nb.00 options=nocal,nopol

uvcat vis=$cal.nb.win$nb.00 out=$cal.nb.win$nb.0 options=nocal

uvcat vis=$cal.hyb.win$nb.00 out=$cal.hyb.win$nb.0 options=nocal

use smamfcal with 1st order polynomial to

get passband on hybrid narrowband and copy to all narrowband

smamfcal vis=$cal.hyb.win$nb.0 line=chan,19,4,3 interval=1 refant=$refant edge=$edge options=opolyfit \

polyfit=$order

gpplt vis=$cal.hyb.win$nb.0 options=bandpass yaxis=phase nxy=4,4 yrange=-90,90 \

device=bp$cal.hyb.win$nb.0.ps/ps

$gv bp$cal.hyb.win$nb.0.ps

Copy narrowband passband from hybrid to all-narrowband mode

gpcopy vis=$cal.hyb.win$nb.0 out=$cal.nb.win$nb.0 options=nocal,nopol

check that all-narrowband passband is flat

rm -rf test.pass

uvcat vis=$cal.nb.win$nb.0 out=test.pass

mfcal vis=test.pass refant=$refant

gpplt vis=test.pass options=bandpass yaxis=phase nxy=4,4 yrange=-90,90 \

device=bptest.ps/ps

$gv bptest.ps

Apply astronomical narrowband passband to hybrid and all-narrowband

uvcat vis=$cal.hyb.win$nb.0 out=$cal.hyb.win$nb options=nocal

uvcat vis=$cal.nb.win$nb.0 out=$cal.nb.win$nb options=nocal

Selfcal on hybrid wideband to remove temporal variations

prior to band offset calibration

selfcal vis=$cal.hyb.win$wide line=channel,$wideline \

interval=$calint options=phase refant=$refant

Copy selfcal solution over to narrow hybrid band and apply

copyhd in=$cal.hyb.win$wide out=$cal.hyb.win$nb items=gains,ngains,nsols,interval

uvcat vis=$cal.hyb.win$nb out=$cal.hyb.win$nb.a

Selfcal on narrow band of hybrid to determine band offset

selfcal vis=$cal.hyb.win$nb.a line=channel,$narrowline \

interval=9999 options=phase refant=$refant

Band offset between hybrid-narrowband $cal.hyb.win$nb.a

and hybrid-wideband $cal.hyb.win$nb

gplist vis=$cal.hyb.win$nb.a options=phase

Also copy band offset to text file

gplist vis=$cal.hyb.win$nb.a options=phase >! mnband_offset.$cal.hybwin$nb.txt

Test by applying to calibrator observed in all-narrowband mode

copyhd in=$cal.hyb.win$nb.a out=$cal.nb.win$nb items=gains,ngains,nsols,interval

uvcat vis=$cal.nb.win$nb out=$cal.nb.win$nb.a

Remove antenna phase gain using super-wideband

rm -rf $cal.wide.sw

uvcat vis=$cal.wide out=$cal.wide.sw select=’win(’$superwidewin’)’

selfcal vis=$cal.wide.sw line=channel,$superwidechan \

interval=9999 options=phase refant=$refant

Copy super-wideband gain to narrowband and apply

copyhd in=$cal.wide.sw out=$cal.nb.win$nb.a items=gains,ngains,nsols,interval

uvcat vis=$cal.nb.win$nb.a out=$cal.nb.win$nb.a.sc

Selfcal to check that phases are roughly zero

to within amount expected given temporal variations over interval

between superwideband and all-narrowband observerations

selfcal vis=$cal.nb.win$nb.a.sc line=channel,$narrowline \

interval=9999 options=phase refant=$refant

7.5. SIMPLE REDUCTION 7-25

List gains, which should be near zero except for temporal variations

over interval between wideband and narrow band observations of cal

echo "**** Phase offset between super-wideband $cal.wide.sw "

echo "**** and all-narrow narrow band $cal.nb.win$nb.a.sc "

echo "**** Check that phases are near zero, limited by atmospheric flucatuations"

gplist vis=$cal.nb.win$nb.a.sc options=phase

Now apply calibrations to source data

rm -rf $source.win$nb* $source.win$nb.bcal

First select source data

uvcat vis=all.nb out=$source.win$nb.00 \

"select=-auto,source($source),win($nb)" options=nocal,nopass

Copy and apply noise passband to source

gpcopy vis=noise.nb.win$nb.00 out=$source.win$nb.00 options=nocal,nopol

uvcat vis=$source.win$nb.00 out=$source.win$nb.0 options=nocal

Copy and apply astronomical passband

gpcopy vis=$cal.hyb.win$nb.0 out=$source.win$nb.0 options=nocal,nopol

uvcat vis=$source.win$nb.0 out=$source.win$nb options=nocal

Copy band offset to source

copyhd in=$cal.hyb.win$nb.a out=$source.win$nb items=gains,ngains,nsols,interval

rm -rf $source.win_$i

Apply band offset using smachunkglue naming convention

uvcat vis=$source.win$nb out=$source.win_$i

end nb loop

end

This end looping over the bands. The three bands can be glued back together, though the complexity
below depends on how many files (bands) we had. It also flags the (bad) overlapping channels between
bands that were glued together.

if ($nblength == 2) then

set cfile=$source.$nb_array[1]$nb_array[2]

rm -rf $cfile

smachunkglue vis=$source.win nfiles=$nblength out=$cfile

uvflag vis=$cfile line=channel,$badchan1 flagval=flag

else if ($nblength == 3) then

set cfile=$source.$nb_array[1]$nb_array[2]$nb_array[3]

rm -r $cfile

smachunkglue vis=$source.win nfiles=$nblength out=$cfile

flag bad overlap channels

uvflag vis=$cfile line=channel,$badchan1 flagval=flag

uvflag vis=$cfile line=channel,$badchan2 flagval=flag

else

set cfile=$source.$nb_array[1]

rm -rf $cfile

uvcat vis=$source.win_$nblength[1] out=$cfile

endif

put in restfreq, using UV override principle

puthd in=$cfile/restfreq type=double value=$restfreq

To apply we are using a handy little c-shell alias:

rm -rf tmptmp.mir

alias apply ’uvcat vis=\!* out=tmptmp.mir; rm -rf \!*; mv tmptmp.mir \!*’

Phase and Amp calibration can now commence, if it was so selected earlier:

7-26 CHAPTER 7. RECIPES

if ($apply_gains == ’y’) then

copy super-wideband gains to source

Apply Phase Gains

gpcopy vis=$viscal.v.wide.sw out=$cfile options=nopol,nopass

#apply $cfile

Apply amplitude calibration

rm -r medianflux

Apply Amplitude Gains from Phasecal: $viscal

#gpcopy vis=$viscal.v.wide.sw.gain out=$cfile options=nopol,nopass

set medianflux = ‘grep Medians $viscal.gains | tr -d Medians:‘

echo $medianflux > medianflux

gplist vis=$cfile options=replace jyperk=@medianflux

apply $cfile

endif

if ($apply_gains == ’n’ && $cal == $fluxcal) then

copy super-wideband gains to source

Apply Phase Gains

gpcopy vis=$viscal.v.wide.sw out=$cfile options=nopol,nopass

rm -r medianflux

Apply Amplitude Gains from Passband Cal: $cal

set medianflux = ‘grep Medians $fluxcal.gains | tr -d Medians:‘

echo $medianflux > medianflux

gplist vis=$cfile options=replace jyperk=@medianflux

apply $cfile

endif

if ($apply_gains == ’n’ && $cal != $fluxcal) then

copy super-wideband gains to source

Apply Phase Gains

gpcopy vis=$viscal.v.wide.sw out=$cfile options=nopol,nopass

rm -r medianflux

Apply Amplitude Gains from Fluxcal: $fluxcal

set medianflux = ‘grep Medians $fluxcal.gains | tr -d Medians:‘

echo $medianflux > medianflux

gplist vis=$cfile options=replace jyperk=@medianflux

apply $cfile

endif

7.5. SIMPLE REDUCTION 7-27

7.5.4 Calibration - IV

This script goes through a data reduction in MIRIAD of CARMA data. It can be modified in order to
fit the specifics of various observations - depending on what needs to be flagged, which calibrator should
be the passband and flux calibrator, etc.

[B] Overview of Millimeter Wavelength radio data reduction

There are only a couple basic steps that must be done

(0) baseline solutions - apply if online ones were wrong/not applied

Needed if slope seen in baseline-baseline

pairs.

(1) bandpass/passband calibration

-accomplish this with task mfcal

-bootflux to scale the calibrator’s amplitude

or a more involved FLUX calibration here

Next two steps create GAINS tables that can be applied to the source

(2) phase calibration

(3) amplitude calibration

-self-cal on the calibrator

#

(4) And Magic - the Fourier transform!

- task "invert" to create the map

#

The rest of the commands are simply to apply calibration

to the desired source/calibrator, to look at the data,

etc.

#

(5) Flux calibration (see step 1)

Set variables for the script

set vis = ct012.arp193.1.miriad

set refant = 9

set source_name = Arp193

set bandpass_name = 3C273

set phasecal_name = 3C273

set fluxcal_name = 3C279

set outfile = ct012_arp193_feb5

set antpos = antpos.070115

The following commands selects only the non-auto-correlation data

and re-writes to the file data.mir

uvcat vis=$vis select=-auto out=data_auto.mir

Baseline Correction applied. In this example, data from June 9, 2007 were used and needd a baseline
correction.

See also: http://cedarflat.mmarray.org/observing/baseline/antpos.070509

if (0) then

7-28 CHAPTER 7. RECIPES

uvedit vis=data_auto.mir apfile=antpos.070115 out=baseline_data.mir

else

cp -r data_auto.mir baseline_data.mir

endif

#---

Rest Frequency Correction

#--

Do a uvlist vis=xxx.mir options=spc to see the rest frequency

and starting frequency of each channel. To put in the

proper rest frequency, do the following:

#

uvputhd in=xxx.mir hdvar=restfreq varval=myrestfreq out=yyy.mir

uvputhd vis=baseline_data.mir hdvar=restfreq varval=225.282 out=data.mir

--

[E] Preliminary Examination of Data

--

Here we look only at the calibrators to just check on weather,

system temp

if ($4 == <2) then

uvindex vis=data.mir log=uvindex.log # scans uvdata file, keywords: vis, interval, refant, log, options

listobs vis=data.mir log=listobs.log

uvlist vis=data.mir options=spectra log=uvlist.log

What other variables are possible to plot?

smavarplt vis=data.mir device=systemp.ps/cps nxy=2,3 yaxis=systemp options=compress # removing compress prints all

smavarplt vis=data.mir device=/xs nxy=2,3 yaxis=systemp options=compress yrange=0,1000

uvlist vis=data.mir options=spec

uvflag vis=data.mir options=noapply flagval=flag #how many flags applied?

#uvplt axis variables: time, dtime, amplitude, real, imag, phase, uu, vv, uvdistance, uvangle, hangle, dhangle, parang

smauvplt vis=data.mir device=/xs axis=time,phase select=’-source(Arp193),-source(noise)’ #line=wide,1,1

smauvplt vis=data.mir device=/xs axis=time,amp select=’-source(Arp193),-source(noise)’ line=wide,1,1

closure vis=$vis line=wide,1,1,1 # to look at closure solutions

options=nowrap # to make plots not wrap - such as phase

Putting the correct rest frequency into the header

#uvputhd vis=data.mir hdvar=restfreq type=d varval=226.434 out=data2.mir

endif

--

[F] Flagging noticeably Bad Data

--

options=noapply # does not apply to data

Determine what needs to be flagged by carefully examining the

data. Look at Tsys vs. time, Amplitudes and phases versus

time, and the pointing.

OVROs and C12 are out

uvflag vis=data.mir flagval=flag "select=ant(1,2,3,4,5,6,12)"

This step does not seem necessary for this data set, flagging based

on pointing, because examining data with smavarplt, yaxis=axisrms,

I get that the absolute magnitude of variations never exceeds 1.

BAZ - 7/13/2007

uvflag vis=data.mir flagval=flag "select=-pointing(0,3),-source(NOISE)"

7.5. SIMPLE REDUCTION 7-29

To flag antennas during a certain time range

Flagging all during these three minutes of bandpass observation

because there is a peak in amplitudes - triangular.

#uvflag vis=data.mir flagval=flag "select=time(07:15:00,07:18:00)"

If I don’t get rid of all OVROs, I have to do something special with the

differing beam sizes if and only if I am doing a mosaic

Unflag following to auto-flag bad antennas

#set badants = "" # bad antennas to flag

#uvflag vis=$vis select=anten’(’$badants’)’ flagval=flag

noticing in uvplt that baseline 12-14 and last scan is bad

#uvflag vis=data.mir flagval=flag "select=ant(12)(14)"

#uvflag vis=data.mir flagval=flag "select=time(11:00:00,11:15:00)"

#uvflag vis=data.mir flagval=flag "select=amp(30)"

#---

[G] Data Handling

--

Split up the data. One can also leave it all together and use

the appropriate select commands while executing various tasks.

Or one can use the mega split program, ProjectExplode to separate

by window and source.

uvcat vis=data.mir "select=source("$source_name")" out=source.mir

uvcat vis=data.mir "select=source("$bandpass_name")" out=bandpass.mir

uvcat vis=data.mir "select=source("$phasecal_name")" out=phasecal.mir

uvcat vis=data.mir "select=source("$fluxcal_name")" out=fluxcal.mir

fluxcal testing testing

set fluxvis=bpcalib_fluxcal

set phasevis=fluxstep_phasecal

uvcat vis=data.mir "select=source("$fluxcal_name")" out=$fluxvis.mir

uvcat vis=data.mir "select=source("$phasecal_name")" out=$phasevis.mir

[H] STEP 1 -> Bandpass/Passband calibration

super-wideband mfcal passband - 1 minute interval

I choose a 1 minute interval here because I have observed my bandpass

for a total of 10 minutes. And why?

mfcal vis=bandpass.mir interval=1 refant=$refant

look at the bandpass data

if ($1 < 2) then

gpplt vis=bandpass.mir options=bandpass yaxis=phase nxy=3,2 yrange=-360,360 device=/xs

gpplt vis=bandpass.mir options=bandpass yaxis=phase nxy=3,2 yrange=-360,360 device=bandpassSolution.ps/ps

uvspec vis=bandpass.mir interval=15 options=nopass device=/xs nxy=3,3 axis=channel,amplitude

uvspec vis=bandpass.mir interval=15 device=/xs nxy=3,3 axis=channel,amplitude

uvspec vis=bandpass.mir interval=1000 device=/xs nxy=3,3 axis=channel,phase yrange=-180,180

endif

copy and apply bandpass calibrator solution to phase calibrator

-no gain calibration

gpcopy vis=bandpass.mir out=phasecal.mir options=nocal

uvcat vis=phasecal.mir options=nocal out=phasecal_bp.mir

copy and apply bandpass calibrator solution to the source, no cal

gpcopy vis=bandpass.mir out=source.mir options=nocal

uvcat vis=source.mir out=source_bp.mir

copy and apply bandpass calibrator to the flux calibrator

7-30 CHAPTER 7. RECIPES

gpcopy vis=bandpass.mir out=fluxcal.mir options=nocal

uvcat vis=fluxcal.mir out=fluxcal_bp.mir

making second copy to have for the super calibrator sandwich try

uvcat vis=source.mir out=source2_bp.mir

#--

[H (continued)] STEP 1b -> Flux calibration

#--

Cleaning up before starting this section again

rm -rf *.gain *.gains *.sw *.wide *.flux *.medians

Perhaps set these ahead of time

#set flux = 8.4

set flux = 12.03

set calint = 0.2

set vcalint = 18

set fcalint = 1

set superwidewin = "1,2,3,4,5,6"

set superwidechan = "1,1,90"

set lsbfluxchan = "1,1,45,45"

set usbfluxchan = "1,46,45,45"

Following all done using test files. No work done on the main files, yet.

mfcal vis=$fluxvis.mir interval=$calint refant=$refant

Examining the data vs. freq and time

gpplt vis=$fluxvis.mir options=bandpass yaxis=phase nxy=3,2 yrange=-360,360 device=/xs

gpplt vis=$fluxvis.mir yaxis=phase nxy=3,2 yrange=-360,360 device=/xs

Copying this derived bp solution from the flux calibrator to our phase calibrator

gpcopy vis=$fluxvis.mir out=$phasevis.mir options=nocal,nopol

uvcat vis=$phasevis.mir out=$phasevis.wide options=nocal

uvcat vis=$fluxvis.mir out=$fluxvis.gain options=nocal "select=win($superwidewin)"

selfcal vis=$fluxvis.gain refant=$refant interval=$fcalint "select=source($fluxcal_name)" options=noscale,amplitude,a

gplist vis=$fluxvis.gain options=zeropha,amp > $fluxvis.gains

Unix pipe to get median values

grep Medians $fluxvis.gains | tr -d Medians: > $fluxvis.medians

cat $fluxvis.medians

straightening out the phase of the phase calibrator - use a phase only selfcal with

a fairly long integration time

uvcat vis=$phasevis.wide out=$phasevis.sw "select=win($superwidewin)"

selfcal vis=$phasevis.sw line=channel,$superwidechan interval=$vcalint options=phase refant=$refant

Now the amplitude gains derived from the flux calibrator can be applied to the phase calibrator

by replacing the amplitudes and keeping the phases determined from the selfcal solution

gplist vis=$phasevis.sw options=replace jyperk=@$fluxvis.medians

#The following special program, uvflux, can gather statistics on this phase calibrator

uvflux vis=$phasevis.sw options=nopol line=chan,$lsbfluxchan

uvflux vis=$phasevis.sw options=nopol line=chan,$usbfluxchan

uvflux vis=$phasevis.sw options=nopol > $phasevis.flux

This value obtained by averaging the results form the LSB and USB above.

set visflux=11.26

echo "come back to this part"

Finally, checking the time variance of the phase calibrator

echo "Checking the time variance of the phase calibrator"

uvcat vis=$phasevis.wide out=$phasevis.wide.gain

selfcal vis=$phasevis.wide.gain refant=$refant interval=$vcalint "select=source($phasecal_name)" \

options=noscale,amplitude flux=$visflux

7.5. SIMPLE REDUCTION 7-31

gplist vis=$phasevis.wide.gain options=zeropha,amp > $phasevis.gains

[I] STEPS 2 & 3 -> Amplitude & Phase Calibration

Create the GAINS tables

selfcal

You want the interval to be about equal to source-calibrator cycle

Use gplist to look at the time intervals (vis=file options=amp or phase)

selfcal vis=phasecal_bp.mir interval=13 refant=$refant

#selfcal vis=mastercalib_bp.mir interval=13 refant=13

gpplt vis=phasecal_bp.mir device=/xs yaxis=phase yrange=-720,720

gpplt vis=phasecal_bp.mir device=gainSolutions.ps/ps yrange=-180,180

Copy self cal solution to

SOURCE

copy selfcal solution to source

gpcopy vis=phasecal_bp.mir out=source_bp.mir options=nopass mode=copy

echo "************************"

echo "*** Apply flux gains to phase cal***"

grep Medians $phasevis.gains | tr -d Medians: > $phasevis.medians

cat $phasevis.medians

gplist vis=phasecal_bp.mir options=replace jyperk=@$phasevis.medians

echo "************************"

echo "********Applying phase gains to source*********"

grep Medians $phasevis.gains | tr -d Medians: > $phasevis.medians

cat $phasevis.medians

gplist vis=source_bp.mir options=replace jyperk=@$phasevis.medians

play with calibrator

cleaning up

rm -rf phasecal.mp phasecal.bm phasecal.sl phasecal.cm phasecal.fits

#linetype,nchan,start,width,step # step=width if you don’t specify.

Try the defaults # options=systemp (will weight by the inverse of the system temp.)

invert vis=phasecal_bp.mir map=phasecal.mp beam=phasecal.bm cell=.33 imsize=512 line=channel,1,1,90

#invert vis=weakcal_bp.mir map=weakcal.mp beam=weakcal.bm cell=.33 imsize=512 line=channel,1,1,90

clean map=phasecal.mp beam=phasecal.bm out=phasecal.sl niters=1000

restor map=phasecal.mp beam=phasecal.bm model=phasecal.sl out=phasecal.cm

look at some stats

imstat in=phasecal.cm region=quarter

imstat in=phasecal.cm region=box’(180,180,200,200)’

ellint in=phasecal.cm

to look at the uv coverage

fits in=phasecal.cm op=xyout out=phasecal.fits

[J] FINAL step - invert

(1)

Check calibration on the weak calibrator

copy bandpass solution to the weak calibrator

7-32 CHAPTER 7. RECIPES

#gpcopy vis=bandpass.mir out=weakcal.mir options=nocal

#uvcat vis=weakcal.mir out=weakcal_bp.mir

copy selfcal solution to weak calibrator

#gpcopy vis=phasecal_bp.mir out=weakcal_bp.mir options=nopass mode=copy

#rm -rf weakcal.mp weakcal.bm weakcal.sl weakcal.cm weakcal.fits

#invert vis=weakcal_bp.mir map=weakcal.mp beam=weakcal.bm cell=0.2 imsize=512

#clean map=weakcal.mp beam=weakcal.bm out=weakcal.sl niter=1000

#restor map=weakcal.mp beam=weakcal.bm model=weakcal.sl out=weakcal.cm

(2)

play with the source

rm -rf $source_name.mp $source_name.bm $source_name.sl $source_name.cm $source_name.fits $outfile.cm

#invert vis=source_bp.mir map=arp220.mp beam=arp220.bm cell=0.2 imsize=512 line=channel,1,1,90

invert vis=source_bp.mir map=Arp193.mp beam=Arp193.bm cell=0.2 imsize=512 line=channel,1,1,90 sup=0

#ine=velocity,30,-4.617,43.450

clean map=Arp193.mp beam=Arp193.bm out=Arp193.sl niters=10000

restor map=Arp193.mp beam=Arp193.bm model=Arp193.sl out=$outfile.cm

Creating the cube

rm -rf $source_name.cube.mp $source_name.cube.bm $source_name.cube.sl $source_name.cube.cm $source_name.cube.fits $outfile.cube.cm

#invert vis=source_bp.mir map=arp220.mp beam=arp220.bm cell=0.2 imsize=512 line=channel,1,1,90

invert vis=source_bp.mir map=Arp193.cube.mp beam=Arp193.cube.bm cell=0.2 imsize=512 line=channel,90,1,1 sup=0

#ine=velocity,30,-4.617,43.450

clean map=Arp193.cube.mp beam=Arp193.cube.bm out=Arp193.cube.sl niters=10000

restor map=Arp193.cube.mp beam=Arp193.cube.bm model=Arp193.cube.sl out=$outfile.cube.cm

#fits in=M80.cm op=xyout out=M80.fits

#rm -rf arp193_2.mp arp193_2.bm arp193_2.sl arp193_2.cm arp193_2.fits

#invert vis=source2_bp.mir map=arp193_2.mp beam=arp193_2.bm cell=0.2 imsize=512

#clean map=arp193_2.mp beam=arp193_2.bm out=arp193_2.sl niter=1000

#restor map=arp193_2.mp beam=arp193_2.bm model=arp193_2.sl out=arp193_2.cm

#fits in=arp193_2.cm op=xyout out=arp193_2.fits

Then look at the final image in ds9 or some other FITS format

viwer. Statistics can be examined, etc.

--

[K] DS9 Viewing Notes

--

You can look at the *.*m maps in ds9 by doing a

mirds9 <filename>

once ds9 is open.

FRAME -> TILE to plot more than 1

FRAME -> BLINK to blink back and forth.

--

[L] Misc. Notes for LATER

--

#

For CARMA array:

note if you have 3 beam sizes

mospsf

imfit

so restor does not use first beam size and apply for all

(this is not an issue for Arp 220 on 25 Apr 2007 because I only

had BIMA dishes)

Chapter 8

Future

As we get to know CARMA and refine calibration strategies, a number of new techniques will undoubtedly
will have to be addressed. We name a few that are appearing on the horizon that you can expect future
versions of the cookbook to address:

• Polarization: dual-polarization (LL and RR) are available, as well as full stokes.

• Blanking and Flagging: baseline and band dependant integration times. This will require some
changes to the lower level Miriad code. A special uv-variable bfmask(nspect) is being prepared,
with a task uvflagb that will transfer selected mask-bits to the normal miriad narrow and wide
band flags.

• More detailed primary beam models for OVRO and BIMA for improved mosaicing. Currently only
simple gaussians are used. Again something needed in Miriad.

• Iterative Selfcal (cf. BIMA Song scripts)

• support for python (see e.g. AIPY)

-1

-2 CHAPTER 8. FUTURE

Appendix A

Installing Miriad

A.1 Setting up your account

Setting up your account to use MIRIAD of course varies a little from system to system, mostly in which
directory the package was installed. If in doubt, ask a local MIRIAD user. We will assume you are using
the csh shell. The environment variable $SHELL will display what login shell you are using.1 For bash,
just replace .csh with .sh in the examples below.

Typically you will need to know where MIRIAD is stored, and then

source /somewhere/miriad/miriad_start.csh

If you have installed a binary release, and have not edited the two miriad start.* files, please do so.
You may also want to check your version of Miriad:

cat $MIR/VERSION

it should be version 4.1.1 as of this writing (July 2009).

A.2 Site dependent setup

Each of the CARMA sites will have a maintained version of MIRIAD.

A.2.1 OVRO

There are two linux versions are maintained depending if you are down at OVRO in the Owens Valley

source /sw/miriad/cvs/miriad_start.csh

or up at CARMA on Cedar Flat:

source /array/miriad/cvs/miriad_start.csh

Local MIRIAD maintainer: Peter Teuben.
1For MacOSX an additional surprise will be that the two terminals, Terminal and xterm, have subtle differences how to

set your default shell, and for MIRIAD you should almost always want to use the xterm given its X11 output.

A-1

A-2 APPENDIX A. INSTALLING MIRIAD

A.2.2 Berkeley

Only a linux version is maintained:

source /indirect/hp/wright/miriad/mir4/MIRRC.linux

Local MIRIAD maintainer: Mel Wright.

A.2.3 Caltech

Maintains Linux, Solaris and MacOSX ?

Local MIRIAD maintainer: ???

source ...

A.2.4 Illinois

source ...

Local MIRIAD maintainer: Douglas Friedel.

A.2.5 Maryland

Maryland uses mostly Mandrake Linux (10.1 as of this writing, but switching to Centos 5.1 as we speak)
on IA-32 as well as IA-64 type machines. A few Solaris machines are still present, but Miriad is not
actively maintained on them (though available upon request).

Maryland also uses astromake, which allows you to (interactively) load various packages in your shell.
Although this comes with an obvious flexibility, the danger is that loading packages in a certain order
could render your interactive shell useless, and loading multiple versions of miriad can make commands
from the older version to peek through the new one and cause unexpected results. Use with caution.
Example:

% source /n/astromake/astromake_start

% astroload ds9

% astroload miriad

or:

% astroload -v daily miriad

% astroload -v 64 miriad

Local MIRIAD maintainer: Peter Teuben.

A.3 Installation

Both binary and source based installs are available for Miriad. For a binary release you will need to
adjust the path to MIR in the two miriad start.* files. There is a risk of shared library conflicts, in
which case you will have to relink and/or recompile the code. The Miriad website provided more details
and instructions how to do this.

A.3. INSTALLATION A-3

A.3.1 Source Installation

Example of a two liner installation:

1% curl ftp://ftp.astro.umd.edu/progs/carma/miriad.tar.gz | tar zxf -

or:

1% wget -O - ftp://ftp.astro.umd.edu/progs/carma/miriad.tar.gz | tar zxf -

2% miriad_cvs/install/install.miriad

and a few lines of usage to certify the installation was ok and you probably have a working version:

3% source miriad_cvs/miriad_start.csh

4% imgen out=map0

5% itemize in=map0

6% cgdisp in=map0 device=/xs

Note that this version of MIRIAD is a development version, and contain CVS administrative files to allow
you to easily update and get the latest fixes directly via CVS. This is much preferred to downloading a
tar file each time and install that.

A.3.2 Binary Installation

We expect to make available binary releases for Linux (32bit and 64bit), MacOSX (ppc and intel) and
perhaps Solaris (sol10 w/ gcc, sol10 w/ sunstudio12?). Details will be on the Miriad website through the
WIKI pages.

A.3.3 Keeping your version up to date

Various files in MIRIAD will be updated from time to time. Even if the source code does not change,
there will be updated Flux Catalog and CARMA Baseline data. This is where CVS will come in very
handy, so make sure this is installed on your computer. The very first time you want to use cvs you may
not the “login” and store the anonymous password.

1% cd $MIR

2% cvs login

Logging in to :pserver:anonymous@cvs.astro.umd.edu:2401/home/cvsroot

CVS password:

3% cvs -nq update

...

M src/inc/maxdim.h

M src/inc/maxdimc.h

...

U src/subs/fitsio.for

U src/prog/misc/itemize.for

...

Lines that start with ‘‘U’’ need to be updated:

4% cvs update

after which subroutine can be added to the library, and programs can be re-installed:

5% mirboss

6% mir.subs fitsio

7% mir.prog itemize

A-4 APPENDIX A. INSTALLING MIRIAD

New and Old Build System

At the moment MIRIAD is undergoing a transition from an old build system (the mir.subs and the
mir.prog are part of this) to a new “autoconf” based system that uses a Makefile. In the new build
system any update should work as follows:

1% cd $MIR

2% cvs update

3% make install

Appendix B

Miriad cheatsheet

B.1 Reminders

• MIRIAD-101:

– for users the MIRIAD package is a set of Unix commands, often called “tasks”, with a set
of keyword=value command line parameters to control the program. Typicallly you source
a script (e.g. miriad start.csh) to change your Unix environment to have this package
included.

– The Miriad Program (called miriad) is a special (miriad) unix program that acts like the
AIPS shell and is an alternative method to invoke Miriad programs. Useful for newbies, as a
way of learning individual tasks.

– Miriad data are directories, with items (normally files, but see below) inside.

• To get help on a task, mirhelp <taskname>, e.g. mirhelp invert. Another quick way to get help
is invert -k or invert -kw.

• source names are stored in UPPER case in visibility files, and are normally converted to upper case
before any comparision. Hence the following two examples are synonymous:

select=source(mars)

select=source(MARS)

• Autocorrelations and a noise source are present in the data, so often you will wind up having to
select them out, the minus sign creates an exclusion selection:

select=-auto,-source(NOISE)

A notable exception where select=-auto does not work is selfcal and mfcal. This is a bug being
worked on.

• When invoking a task from the Unix shell, use quotes for keywords that use Unix meta characters,
such as parenthesis. Example

% uvspec select=’win(3)’

% uvspec select="win(3)"

If you are in the MIRIAD shell, these quotes are not needed.

B-1

B-2 APPENDIX B. MIRIAD CHEATSHEET

B.2 Miriad DATASETS

Miriad datasets are implemented as a directory1. The data itself are organized in items, normally imple-
mented as separate files, but small items (32 bytes or less) can be found together in a file called header.
The Miriad program itemize will list the items in a dataset. Other programs that manipulate items are
puthd (add of modify a simple item), copyhd (copy an item from one dataset to another), delhd (remove
an item), gethd (show value of a simple item), prthd (show compound contents of a dataset), and mathd

(perform a mathematical operation on an item).

Miriad currently knows about two types of data: visibility data and image cubes, described in a bit more
detail below:

B.2.1 Visibility data

See Appendix D for more information.

Apart from direct observatory data, you can create visibility data using uvgen or import them from other
packages using the fits program, though both of those have limitations to the number of UV variables
it can produce (and thus limit the functionality of some MIRIAD programs).

Calibration Tables

Calibration programs such as selfcal and mfcal write gain and bandpass calibration tables inside a
visibility dataset. Programs gplist and bplist will list them on the screen, and gpplt options=gains

or gpplt options=bandpass will plot them. Programs such as uvcat and uvcal will selectively apply
these complex gains as they copy the data, in essence they have calibrated the data.

B.2.2 Image data

Much like FITS images, miriad images... Although invert creates images, you can also create images
from scratch with imgen and maths, and convert them from other packages using the fits program.

Mosaic Tables

Not unlike visibility data, image data can also contain ancillary tables to aid the organization of the image
data. One example is mosaiced data, where a table of the pointing centers of a mosaiced field (invert
options=mosaic,....) is contained. To get a listing of these centers, use imlist options=mosaic.

B.3 Common Miriad Keywords

A number of keywords are often used with the same meaning. You can use the mirhelp command on
them to get current help, but here are some reminders to the most important ones:

1formally they can be a hierarchy of directories, but no practical use has been made of this

B.3. COMMON MIRIAD KEYWORDS B-3

B.3.1 vis=

B.3.2 in=

B.3.3 device=

Graphics output is all done via PGPLOT, and the command line parameter device= is commonly used to
select the device. Examples: /ps, fig1.ps/vps, /xs, 2/xs, fig2.cps/vcps, plot1.gif/gif. The
mirhelp device command will also explain. If you use device=? PGPLOT will give you a list of
the devices that were installed in your version of PGPLOT. Note that on some older gfortran based
compilers the GIF device driver could not be compiled yet and will be absent.

B.3.4 select=

The select= keyword that many (but not all!) miriad programs use has a very rich set of commands to
select from a visibility data stream. Detailed in the Users Guide, we merely provide a short cheat sheet
here. The mirhelp select command also provides more details (look for select.kdoc)

time(t1,t2) in UT, accepts yymmmdd.fff or yymmmdd:hh:mm:ss.s format [t1,t2)

ant(a1,a2,...)(b1,b2,..) select baselines from the a’s and b’s . b’s optional

uvrange(uvmin,uvmax) (in kLambda)

uvnrange(uvmin,uvmax) (in nanosecs)

vis(n1,n2) visibility number n1..n2 (inclusive)

increment(inc) every inc’th visibility

ra(r1,r2)

dec(d1,d2)

ha(h1,h1) hour angle

lst(lst1,lst2) LST range

elevation(el1,el2)

dra(p1,p2)

ddec(p1,p2)

dazim(p1,p2)

delev(p1,p2)

pointing(p1,p2) uses MAX(az,el) error

pol(p1,p2,p3,...) polarization (select from "i,q,u,v,xx,yy,xy,yx,rr,ll,rl,lr")

source(NAME1,NAME2,...)

purpose(LIST[,option]) Select on purpose (BFGPRSO). CARMA guarentees them to be alphabetical.

freq(f1,f2) sky freq must be in range f1..f2 (GHz)

amp(amplo,amphi) one number means amp(amplo)

shadow(d) shadowing less than ’d’ (meter)

bin(b1,b2)

on(n) select on (1) or off (0) for single dish observations

auto auto correlations

window(w1,w2,...) spectral window number (1..maxspect)

seeing(s1,s2) select when rms path variations is between s1..s2 (microns)

These may be combined (logical AND) with comma separation, e.g. select=ant(1),win(5).

B.3.5 line=

line=channel,NUMBER,START,WIDTH,STEP (integers)

line=velocity,NUMBER,START,WIDTH,STEP (km/s)

B-4 APPENDIX B. MIRIAD CHEATSHEET

line=wide,NUMBER,START,WIDTH,STEP (integers)

NUMBER = number of channels to output

START = starting channel number

WIDTH = number of channels to average together

STEP = channel increment

The mirhelp line command also provides more details (look for line.kdoc)

B.3.6 region=

Much like the select= for visibility data, this selects a portion from your miriad image data cube for
further processing. Again, details are in the Users Guide,we merely provide this in brief form here. The
mirhelp region command also provides more details.

images(z1,z2)

quarter(z1,z2)

boxes(xmin,ymin,xmax,ymax)(z1,z2)

polygon(x0,y0,x1,y1,x2,y2,...)(z1,z2)

mask(file)

abspixel

relpixel

relcenter

arcsec

kms

B.3.7 options=

This is a catch-all keyword many programs use to refine the operations of a program. They are normally
used as a comma separated list of (minimum matched) options, e.g.

% uvplt vis=3c273 options=nocal,flagged,nobase,dots

Many programs share common options.

B.3.8 vis=, in=

Used for input for visibility data (vis=; some programs, such as invert, accept multiple files separated
by a comma) and images (in=).

B.4 Gridding time/frequency/Keeping track of time in MIRIAD

Observations such as the one in CARMA are tagging by time, and map portions of the sky at a number of
frequencies. As such the concept of understanding gridding coordinates becomes important how “pixels”
are labeled. Are they using the center, or are they using the start of a interval/pixel/voxel... This

B.5. PROGRAMMING IN MIRIAD B-5

section will clarify the conventions in MIRIAD. In FITS, an astronomy standard to exchange data, the
convention is always the center of the pixel/interval, as long as the FITS keyswords NAXISn, CRVALn,

CDELTn, CRPIXn, CTYPEn are involved.

B.4.1 time: uvgen, CARMA, uvaver

Time (UV variable time, in JD) is recorded at the start of an integration interval (UV variable inttime,
in sec). For example, for uvgen time=09jul01:10:00:00 harange=0,1,0.1 you will see times:

09JUL01:10:00:00.0

09JUL01:10:05:59.0

09JUL01:10:11:58.0

09JUL01:10:17:57.1

09JUL01:10:23:56.1

09JUL01:10:29:55.1

09JUL01:10:35:54.1

09JUL01:10:41:53.1

09JUL01:10:47:52.1

09JUL01:10:53:51.2

Programs such selfcal and mselfcal extract and average times from these observations and again
record the nominal starting time of their interval in the gain tables. uvaver can also average in time.

B.4.2 frequency: uvaver

Programs dealing with frequencies and velocities in multi-channel data follow the normal FITS convention
where the center of the interval/pixel

B.4.3 position: invert

Maps produced by invert produce sky coordinates that comply with the FITS convention that the center
of the pixel refers to the coordinate.

B.5 Programming in MIRIAD

MIRIAD was written with the intent that “anybody” should be able to re-program it. Most MIRIAD
programs are implemented as a Fortran PROGRAM, calling a suite of subroutines from our MIRIAD
library. Graphics is all done via the publicly available PGPLOT library, which comes with MIRIAD. A
small part of the library is actually written in C, which implements all the lower level routines that read
and write MIRIAD files. However, most of the “astronomy” is implemented in Fortran.

The most common scenario is when a program needs a small modification, for example, a write statement
needs more digits, or an extra column.

B.5.1 Old-style build

The old-style build uses a set of shell scripts, whereas a configuration file contains the compiler flags
and such. You can recognize the old-style build because $MIR/bin and $MIR/lib exist and has a few
subdirectories. The new-style build works the other way around and places those normally inside a single
$MIR/build directory.

B-6 APPENDIX B. MIRIAD CHEATSHEET

% edit $MIRPROG/calib/mfcal.for

% mirboss

% mir.prog mfcal

If you want to change a subroutine, it will depend if your Unix version uses shared libraries if you
need to recompile the relevant programs as well. Currently the answer is : Linux uses a shared library
($MIRLIB/libmir.so), whereas Mac does not.

% edit $MIRSUBS/uvdat.for

% mirboss

% mir.subs uvdat

Another common scenario is that code has been updated by the MIRIAD developers. In that case the
procedure would be the conservative approach and recompile everything:

% cd $MIR

% cvs update

% mirboss

% mir.install subs prog

Check the recent logfiles in $MIR/tmp for compilation or linking errors.

B.5.2 New-Style build

The new style build uses the well known configure script (via the autoconf procedure) a Makefile.
You can recognize it because there will be a single $MIR/build directory within which we keep the usual
bin, lib, etc... directories.

Although this method aims to be more portable (the old method often required editing compiler options
in files that were hard to figure out for a newcomer), the drawback compared to the old-style is that you
need to be in the MIRIAD home directory, and the chain of dependancies could mean a long (several
minutes) build for what takes 0.5 sec in the old-style build. Example:

% edit $MIRPROG/calib/mfcal.for

% cd $MIR

% make install

% cd -

Unlike the previous examples in the old-style build, this recipe should work for any style of change to the
MIRIAD source code .

Appendix C

Scripting

C.1 Interactive shells

Miriad vs. Unix. Miriad shell uses save/load and tput/tget commands, and if properly installed the
readline library. Unix shells have different command history recall.

C.2 Programmable shells

Shell (csh/sh/bash) programming vs. python (pyramid)

Useful to import, like MIRIAD programs, to allow a keyword=value commandline syntax. Easy to fake
in csh.

C.3 Example: mosaic.py

Here is an example of a mosaic script, using pyramid procedures.

1: #!/usr/bin/env python

2: #

3: # History:

4: # june 02 mchw. ALMA script.

5: # 15aug02 mchw. CARMA version edited from ALMA script.

6: # 23aug02 mchw. calculate region from source size.

7: # 20sep02 mchw. Re-import CARMA improvements for ALMA.

8: # 25sep02 mchw. Re-import improvements from hex7.csh to hex19.csh

9: # 26sep02 mchw. Increase imsize from 129 to 257.

10: # 12mar03 mchw. convert to PYTHON.

11: # 13mar03 pjt more conversion to PYTHON, now at 200ft, renamed to mosaic.py

12:

13: import sys, os, time, string, math

14: from Miriad import *

15:

16: version=’2003-03-14’

17:

18: print " --- ALMA Mosaicing (Cas A model) --- "

19:

20: # command line arguments that can be changed...

21: keyval = {

22: "config" : "config1", # antenna config file (without the .ant extension)

23: "dec" : "-30", # declination (can be a real number)

24: "image" : "casc.vla", # image to test (nice Cas-A VLA image as default)

C-1

C-2 APPENDIX C. SCRIPTING

25: "cell" : "0.04", # scale size (should be calculated from image)

26: "nchan" : "1", # number of channels

27: "method" : "mosmem", # mosmem, joint, or default

28: "flux" : "732.063", # expected flux in the image (for mosmem)

29: "nring" : "3", # number of rings in the mosaic

30: "grid" : "12.0", # gridsize (in arcsec) for the mosaic

31: "center" : "", # optional center file that overrides (nring,grid)

32: "VERSION" : "1.0 mchw" # VERSION id for the user interface

33: }

34:

35: help = """

36: The minimum amount of information you need to run this task is:

37: a miriad image (image=) for the model.

38: an antenna configuration file (<config>.ant) for uvgen

39: """

40:

41: keyini(keyval,help,0)

42: # report current defaults, exit if --help given

43: setlogger(’mosaic.log’)

44: #

45: # ---

46:

47: #

48: # define all variables, now in their proper type, for this script

49: #

50:

51: config = keya(’config’)

52: dec = keyr(’dec’)

53: cell = keyr(’cell’)

54: nchan = keyi(’nchan’)

55: method = keya(’method’)

56: center = keya(’center’)

57: flux = keyr(’flux’)

58: image = keya(’image’)

59: nring = keyi(’nring’)

60: grid = keyr(’grid’)

61:

62: harange = ’-1,1,0.013’

63: select = ’-shadow\(12\)’

64: freq = 230.0

65: imsize = 257 # avoid 2**N, image size 2**N + 1 is good. [or calculate from image]

66:

67: mir = os.environ[’MIR’]

68:

69: # ---

70:

71: # returns a list of strings that are the ascii centers as uvgen wants them

72: # (in a file) via the center= keyword

73: def hex(nring,grid):

74: center=""

75: npoint=0

76: for row in range(-nring+1,nring,1):

77: y = 0.866025403 * grid * row

78: lo = 2-2*nring+abs(row)

79: hi = 2*nring-abs(row)-1

80: for k in range(lo,hi,2):

81: x = 0.5*grid*k

82: npoint = npoint + 1

83: if center=="":

84: center = center + "%.2f,%.2f" % (x,y)

85: else:

86: center = center + ",%.2f,%.2f" % (x,y)

87: return (npoint,center)

88:

89: # get the (as a string) value of an item in a dataset

90: def itemize(data,item):

91: log = ’tmp.log’

92: cmd = [

93: ’itemize’,

94: ’in=%s/%s’ % (data, item),

C.3. EXAMPLE: MOSAIC.PY C-3

95: ’log=%s’ % log

96:]

97: miriad(cmd)

98: f = open(log,"r")

99: v = string.split(f.readline())

100: f.close()

101: return v[2]

102:

103: # copy a file from source (s) to destination (d)

104: def copy_data(s,d):

105: zap(d)

106: os.system("cp -r %s %s" % (s,d))

107:

108:

109: # should this be

110: # units=None

111: # if units is None:

112: # bla

113: # else:

114: # bla

115:

116: def puthd(map,item,value,units=0):

117: cmd = [

118: ’puthd’,

119: ’in=%s/%s’ % (map,item),

120:]

121: if (units == 0):

122: cmd.append("value=%s" % value)

123: else:

124: cmd.append("value=%s,%s" % (value,units))

125: return cmd

126:

127: def demos(map,vis,out):

128: cmd = [

129: ’demos’,

130: ’map=%s’ % map,

131: ’vis=%s’ % vis,

132: ’out=%s’ % out,

133:]

134: zap_all(out+"*")

135: return cmd;

136:

137: def invert(vis,map,beam,imsize,select):

138: cmd = [

139: ’invert’,

140: ’vis=%s’ % vis,

141: ’map=%s’ % map,

142: ’beam=%s’ % beam,

143: ’imsize=%d’ % imsize,

144: ’select=%s’ % select,

145: ’sup=0’,

146: ’options=mosaic,double’,

147:]

148: zap(map)

149: zap(beam)

150: return cmd

151:

152: def cgdisp(map):

153: cmd = [

154: ’cgdisp’,

155: ’in=%s’ % map,

156: ’device=/xs’,

157: ’labtyp=arcsec’,

158: ’range=0,0,lin,8’

159:]

160: return cmd;

161:

162: def uvmodel(vis,model,out):

163: cmd = [

164: ’uvmodel’,

C-4 APPENDIX C. SCRIPTING

165: ’vis=%s’ % vis,

166: ’model=%s’ % model,

167: ’out=%s’ % out,

168: ’options=add,selradec’

169:]

170: zap(out)

171: return cmd;

172:

173: def implot(map,region=’quarter’):

174: cmd = [

175: ’implot’,

176: ’in=’ + map,

177: ’device=/xs’,

178: ’units=s’,

179: ’conflag=l’,

180: ’conargs=1.4’,

181: ’region=%s’ % region

182:]

183: return cmd

184:

185: def imlist(map):

186: cmd = [

187: ’imlist’,

188: ’in=’ + map,

189: ’options=mosaic’

190:]

191: return cmd

192:

193:

194: def imgen(map,out,pbfwhm):

195: cmd = [

196: ’imgen’,

197: ’in=%s’ % map,

198: ’out=%s’ % out,

199: ’object=gaussian’,

200: ’factor=0’,

201: ’spar=1,0,0,%g,%g’ % (pbfwhm,pbfwhm)

202:]

203: zap(out)

204: return cmd

205:

206:

207: def mosmem(map,beam,out,region,flux=0,default=0):

208: cmd = [

209: ’mosmem’,

210: ’map=%s’ % map,

211: ’beam=%s’ % beam,

212: ’out=%s’ % out,

213: ’region=%s’ % region,

214: ’rmsfac=200,1’,

215: # ’niters=200’

216: ’niters=2’

217:]

218: if flux != 0:

219: cmd.append(’flux=%g’ % flux)

220: if default != 0:

221: cmd.appenx(’default=%s’ % default)

222: zap(out)

223: return cmd

224:

225: def restor(map,beam,model,out):

226: cmd = [

227: ’restor’,

228: ’model=%s’ % model,

229: ’map=%s’ % map,

230: ’beam=%s’ % beam,

231: ’out=%s’ % out

232:]

233: zap(out)

234: return cmd

C.3. EXAMPLE: MOSAIC.PY C-5

235:

236: def regrid(map,tin,out):

237: cmd = [

238: ’regrid’,

239: ’in=%s’ % map,

240: ’tin=%s’ % tin,

241: ’out=%s’ % out,

242: ’axes=1,2’

243:]

244: zap(out)

245: return cmd

246:

247: def convol(map,out,b1,b2,pa):

248: cmd = [

249: ’convol’,

250: ’map=%s’ % map,

251: ’out=%s’ % out,

252: ’fwhm=%g,%g’ % (b1,b2),

253: ’pa=%g’ % pa

254:]

255: zap(out)

256: return cmd

257:

258: def imframe(map,out):

259: cmd = [

260: ’imframe’,

261: ’in=%s’ % map,

262: ’out=%s’ % out,

263: ’frame=-1024,1024,-1024,1024’ # TODO:: the 1024 here depends on the input image size

264:]

265: zap(out)

266: return cmd

267:

268: def uvgen(ant,dec,harange,freq,nchan,out,center):

269: cmd = [

270: ’uvgen’,

271: ’ant=%s’ % ant,

272: ’baseunit=-3.33564’,

273: ’radec=23:23:25.803,%g’ % dec,

274: ’lat=-23.02’,

275: ’harange=%s’ % harange,

276: ’source=$MIRCAT/point.source’,

277: ’telescop=alma’,

278: ’systemp=40’,

279: # ’pnoise=30’,

280: ’jyperk=40’,

281: ’freq=%g’ % freq,

282: ’corr=%d,1,0,8000’ % nchan,

283: ’out=%s’ % out,

284: ’center=%s’ % center # notice we don’t use a file, but a string of numbers

285:]

286: zap(out)

287: return cmd

288:

289: def imdiff(in1,in2,resid):

290: cmd = [

291: ’imdiff’,

292: ’in1=%s’ % in1,

293: ’in2=%s’ % in2,

294: ’resid=%s’ % resid,

295: ’options=nox,noy,noex’

296:]

297: zap(resid)

298: return cmd

299:

300: def histo(map,region):

301: cmd = [

302: ’histo’,

303: ’in=%s’ % map,

304: ’region=%s’ % region

C-6 APPENDIX C. SCRIPTING

305:]

306: return cmd

307:

308: # ==

309: #

310: # start of the actual script

311: # ---

312: # Nyquist sample rate for each pointing.

313: # calc ’6/(pi*250)*12’

314: cells = 500*cell

315: region = "arcsec,box\(%.2f,-%.2f,-%.2f,%.2f\)" % (cells,cells,cells,cells)

316:

317: ant = config + ’.ant’ # antenna file for uvgen

318: uv = config + ’.uv’ # dataset for visibilities

319:

320: demos1 = "%s.cas.%g.demos" % (config,cell)

321: base1 = "%s.%g.cas.%g" % (config,dec,cell)

322: base2 = "single.%g.cas.%g" % (dec,cell)

323:

324: map1 = base1 + ".mp"

325: beam1 = base1 + ".bm"

326: map2 = base2 + ".map"

327: beam2 = base2 + ".beam"

328: mem = base1 + ".mem"

329: cm = base1 + ".cm"

330: mp = base1 + ’.mp’

331: res = base1 + ’.resid’

332: conv = base1 + ’.conv’

333:

334: if center == "":

335: (npoint,center) = hex(nring,grid)

336: print "MOSAIC FIELD, using hexagonal field with nring=%d and grid=%g (%d pointings) " % (nring,grid,npoint)

337: else:

338: centerfile = center

339: f = open(centerfile,"r")

340: center=f.read()

341: f.close()

342: npoint = len(string.split(center,","))-1

343: center=string.replace(center,’\n’,’,’)

344: print "MOSAIC FIELD, using center file %s (%d pointings) " % (centerfile,npoint)

345:

346: print " --- ALMA Mosaicing (Cas A model) --- "

347:

348: print " config = %s" % config

349: print " dec = %g" % dec

350: print " scale = %g" % cell

351: print " harange = %s hours" % harange

352: print " select = %s" % select

353: print " freq = %g" % freq

354: print " nchan = %d" % nchan

355: print " imsize = %d" % imsize

356: print " region = %s" % region

357: print " method = %s" % method

358: print " "

359: print " --- TIMING --- "

360:

361: if method == "mosmem":

362: print "Generate mosaic grid"

363: # lambda/2*antdiam (arcsec)

364: print 300/freq/2/12e3*2e5

365:

366: print "Generate uv-data. Tsys=40K, bandwidth=8 GHz "

367: miriad(uvgen(ant,dec,harange,freq,nchan,uv,center))

368: os.system(’uvindex vis=%s’ % uv)

369:

370: print "Scale model size from pixel 0.4 to %g arcsec" % cell

371: # with 0.4 arcsec pixel size Cas A is about 320 arcsec diameter; image size 1024 == 409.6 arcsec

372: # scale model size. eg. cell=0.1 arcsec -> 80 arcsec cell=.01 -> 8 arcsec diameter

373:

374: copy_data(image,base2)

C.3. EXAMPLE: MOSAIC.PY C-7

375:

376: miriad(puthd(base2,’crval2’,dec,units=’dms’))

377: miriad(puthd(base2,’crval3’,freq))

378: miriad(puthd(base2,’cdelt1’,-cell,units=’arcsec’))

379: miriad(puthd(base2,’cdelt2’,cell,units=’arcsec’))

380:

381: print "Make model images for each pointing center"

382: miriad(demos(base2,uv,demos1))

383:

384: print "Make model uv-data using VLA image of Cas A as a model (the model has the VLA primary beam)"

385: for i in range(1,npoint+1):

386: miriad(cgdisp(demos1+"%d"%i))

387: vis_i = base1+".uv%d"%i

388: demos_i = demos1+"%d"%i

389: miriad(uvmodel(uv,demos_i,vis_i))

390: if i==1:

391: vis_all=vis_i

392: else:

393: vis_all=vis_all + ’,’ + vis_i

394: print "UVMODEL: add the model to the noisy sampled uv-data"

395:

396: miriad(invert(vis_all, base1+".mp", base1+".bm", imsize, select))

397:

398: print "INVERT: "

399:

400: miriad(implot(base1+’.mp’,region=region))

401: miriad(imlist(base1+’.mp’))

402:

403: print "Make single dish image and beam"

404:

405: pbfwhm = string.atof(grepcmd("pbplot telescop=alma freq=%g" % freq, "FWHM", 2)) * 60.0

406:

407: print "Single dish FWHM = %g arcsec at %g GHz" % (pbfwhm,freq)

408:

409: miriad(imframe(base2,base2+".bigger"))

410: miriad(convol(base2+".bigger",base2+".bigger.map",pbfwhm,pbfwhm,0.0))

411: miriad(regrid(base2+".bigger.map",base1+’.mp’,base2+".map"))

412: miriad(imgen(base2+".map",base2+".beam",pbfwhm))

413: miriad(implot(base2+".map"))

414: miriad(puthd(base2+".map",’rms’,’7.32’)) # is that 1/100 of the flux ???

415:

416: if method==’mosmem’:

417: print " MOSMEM Interferometer only"

418: print " MOSMEM Interferometer only with niters=200 flux=%g rmsfac=200." % flux

419: miriad(mosmem(map1,beam1,mem,region,flux=flux))

420: elif method==’joint’:

421: print "Joint deconvolution of interferometer and single dish data"

422: print "Joint deconvolution of interferometer and single dish data ; niters=200 rmsfac=200,1"

423: miriad(mosmem(map1+’,’+map2,beam1+’,’+beam2,mem,region))

424: elif method==’default’:

425: print "MOSMEM with default single dish image"

426: print "MOSMEM with default single dish image; niters=200 rmsfac=200"

427: miriad(mosmem(map1,beam1,mem,region))

428: else:

429: print "Unknown method " + method

430:

431: miriad(restor(map1,beam1,mem,cm))

432: miriad(implot(map1,region=region))

433:

434: print "convolve the model by the beam and subtract from the deconvolved image"

435: b1 = string.atof(grepcmd(’prthd in=%s’ % cm, ’Beam’, 2))

436: b2 = string.atof(grepcmd(’prthd in=%s’ % cm, ’Beam’, 4))

437: b3 = string.atof(grepcmd(’prthd in=%s’ % cm, ’Position’, 2))

438:

439: miriad(convol(base2,base1+’.conv’,b1,b2,b3))

440: miriad(implot(base1+’.conv’,region=region))

441:

442: print "regrid the convolved model to the deconvolved image template"

443:

444: miriad(regrid(base1+".conv",base1+".cm",base1+’.regrid’))

C-8 APPENDIX C. SCRIPTING

445: miriad(implot(base1+’.regrid’,region=region))

446:

447: # skipping cgdisp /gif production

448:

449: miriad(imdiff(base1+’.cm’,base1+’.regrid’,base1+’.resid’))

450: miriad(implot(base1+’.resid’,region=region))

451: miriad(histo(base1+’.resid’,region=region))

452:

453: # ==

454:

455: print "print out results - summarize rms and beam sidelobe levels"

456: print " --- RESULTS --- "

457:

458: # extract information, the hard way

459:

460: # BUG: doesn’t look like ’mp’ has rms???

461: #rms = string.atof(itemize(mp,’rms’)) * 1000

462: rms = -1

463: srms = string.atof(grepcmd(’histo in=%s’ % res, ’Rms’, 3))

464: smax = string.atof(grepcmd(’histo in=%s’ % res, ’Maximum’, 2))

465: smin = string.atof(grepcmd(’histo in=%s’ % res, ’Minimum’, 2))

466: Model_Flux = string.atof(grepcmd(’histo in=%s region=%s’ % (conv,region),’Flux’,5))

467: Model_Peak = string.atof(grepcmd(’histo in=%s region=%s’ % (conv,region),’Maximum’,2))

468: Flux = string.atof(grepcmd(’histo in=%s region=%s’ % (cm,region),’Flux’,5))

469: Peak = string.atof(grepcmd(’histo in=%s region=%s’ % (cm,region),’Maximum’,2))

470: Fidelity = Peak/srms

471:

472: print " Config DEC HA[hrs] Beam[arcsec] scale Model_Flux,Peak Image_Flux,Peak Residual:Rms,Max,Min[Jy] Fidelity"

473: print " %s %g %s %.3f %g %g %g %.3f %.3f %.3f %.3f %.3f %.3f %.3f %.3f" % (config,dec,harange,rms,b1,b2,

474: cell,Model_Flux,Model_Peak,Flux,Peak,srms,smax,smin,

475:

476: #mv timing hex19.$config.$dec.$harange.$nchan.$imsize

477: #cat $config.$dec.$harange.$nchan.$imsize

478: #cat casa.results

479: #enscript -r casa.results

480:

481: #print "DEBUGGING"

482: #string.atof(itemize(mp,’rms’))

Appendix D

UV Variables

D.1 UV Dataset

A MIRIAD uv dataset is composed of a collection of items and ‘u − v variables’. The variables are
parameters that are known at the time of the observation, and include measured data, and the description
of the observation set up (e.g. correlator set up and observing centers).

Table D.1 gives a list of the items that are used to build up a MIRIAD uv dataset.

The Programmers Guide contains more detailed information on how a visibility dataset is constructed,
this Appendix only reports which variables can be found in the item visdata. The text item vartable

contains an ordered (for quick indexing) list of all the variables which exist in the visdata item.

A list of all items in a visibility dataset is summarised in Table D.1 below. A list of all the uv variables
can be obtained with the MIRIAD program uvlist or uvio for the brave of heart.

The storage types (2nd column) in the table below are:

A -- ascii (NULL terminated)

R -- real (32 bit IEEE)

D -- double (64 bit IEEE)

C -- complex (2 * 32 bit IEEE)

I -- integer (32 bit twos complement)

J -- short (16 bit twos complement)

K -- long (64 bit twos complement) *** not currently used in visdata ***

They are the same as the data type in the first column of the vartable item in a MIRIAD uv dataset.

Variables with two dimensions have the first dimension varying fastest, the usual FORTRAN notation.
UV-Variables, just like items in a MIRIAD dataset, should be limited to 8 characters.

NB: The formal version of this document is recorded as “September 20, 2010”.

D-1

D-2 APPENDIX D. UV VARIABLES

Table D.1: MIRIAD items in a uv visibility dataset

Item name Type Description
obstype ascii value: ‘cross’, ‘auto’ or ‘mixed’
history text history text file (in principle editable)
vartable text lookup table for all uv variables (never edit!)
bftable text lookup table for bfmask
visdata mixed data stream of uv variables
flags integer optional flags for narrowband data
wflags integer optional flags for wideband data
gains mixed antenna gain table; delhd (or rm) this item to disable gain table

table: (t,gains(ngains))(nsols)
bandpass complex bandpass function gains; delhd (or rm) this item to disable passband corrections

table: (nchan0,ngains)
freqs mixed frequency set up description table for ‘bandpass’

table: (nschan,ndum,sfreq,sdf)(nspect0)
nspect0 integer number of windows in the bandpass function
nchan0 integer total number of channels in the bandpass function
nfeeds integer number of feeds on each antenna
ntau integer Number of delay/spectral index terms per antenna in ‘gains’
nsols integer number of records in ‘gains’
ngains integer number of antenna gains in each record of ‘gains’
interval double gain interpolation time tolerance (days)
freq0 double reference frequency for delay terms
leakage complex polarization leakage parameters
cgains complex baseline based channel gains
ncgains integer
ncbase integer
wgains complex baseline based wideband gains
nwgains integer
nwbase integer

D.1. UV DATASET D-3

Name Ty Units Comments

airtemp R centigr. Air temperature at observatory
antaz(nants) D deg. azimuth of antennas (CW; BIMA used 0=south CARMA uses 0=north)
antdiam R meters Antenna diameter
antel(nants) D deg. elevation of antennas
antpos(nants, 3) D nanosec Antenna equatorial coordinates, with X along the local meridian (not Greenwich)
atten(nants) I dB Attenuator setting (Hat Ck/CARMA) datatype R ???
axismax(2,nants) R arcsec Maximum tracking error in a cycle.

axismax(1,?) is azimuth error,
axismax(2,?) is the elevation error.

axisoff(nants) R nanosec Horizontal offset between azimuth and elevation axes (CARMA)
axisrms(2,nants) R arcsec RMS tracking error.

axisrms(1,?) is azimuth error,
axisrms(2,?) is the elevation error.

baseline R - The current antenna baseline
Baseline is stored as 256 ∗ ant1 + ant2 or
2048 ∗ ant1 + ant2 + 65536
The uv coordinates are calculated as
uvw = xyz(ant2)− xyz(ant1).
Note that this is different from the AIPS/FITS convention
(where uvw = xyz(ant1)− xyz(ant2)).
When writing this variable, software must ensure that
ant1 < ant2.
baseline is also known as preamble(4) or preamble(5)
depending if you have uv or uvw data resp.

bfmask(nspect) I - Blanking/Flagging mask (Not Implemented yet)
bin I - Pulsar bin number.
cable(nants) D nanosec measured length of IF cable (Hat Ck)
calcode A - ATCA calcode flag
chi R radians Position angle of the X feed relative to the sky. This is the
or chi(nants) sum of the parallactic angle and the evector variable.

If only one value is present, all antennas are
assumed to have identical values.

chi2 R radians Second feed angle variation (SMA)
coord(*) D nanosec uv(w) baseline coordinates ?? what epoch ??

coord is also known as preamble(1:2) or preamble(1:3)
depending if you have uv or uvw data resp.

corbit(nspect) I - Number of correlator bits (CARMA: 2,3,4)
corbw(2) R MHz Correlator bandwidth setting (Hat Ck)

Must take the values
1.25, 2.5, 5.0, 10.0, 20.0, 40.0 & 80.0 MHz.

corfin(4) R MHz Correlator LO setting before Doppler tracking (Hat Ck)
This is the LO frequency at zero telescope velocity
Must be in the range 80 to 550 MHz.

cormode I - Correlator mode (Hat Ck). Values are:
1 : 1 window /sideband by 256 channels
2 : 2 windows/sideband by 128 channels
3 : 4 windows/sideband by 64 channels, single sideband
4 : 4 windows/sideband by 64 channels, double sideband

coropt I - Correlator option (Hat Ck)
0 means cross-correlation
1 means auto-correlation
Same as the obstype item?

corr(nchan) J or - Correlation data
R corr is really a complex quantity, but the

data stream variable can be stored otherwise
for efficiency.

cortaper R - On-line correlation taper (Hat Ck)
This is the value at the edge of the window

D-4 APPENDIX D. UV VARIABLES

The value is from 0-1.
dazim(nants) R radians Offset in Azimuth. (CARMA)
ddec R radians Offset in declination from dec in epoch coordinates.

The actual observed DEC is calculated as dec + ddec.
dec R or radians Declination of the phase center/tangent point. See epoch for

D coordinate definition. See also obsdec

delay(nants) D nanosec delay setting at beginning of integration (Hat Ck/CARMA 2011)
delayry(nants) D nanosec delay setting RY at beginning of integration (CARMA 2011)
delaylx(nants) D nanosec delay setting LX at beginning of integration (CARMA 2011)
delay0(nants) R nanosec delay offset for antennas (Hat Ck)
deldec R or radians Declination of the delay tracking center. See epoch for coordinate

D definition.
delev(nants) R radians Offset in Elevation (CARMA)
delra R or radians Right ascension of the delay tracking center. See epoch

D for coordinate definition.
dewpoint R centigr. Dew point at weather station (Hat Ck)
dra R radians Offset in right ascension from ra in epoch coords.

The actual observed RA is calculated as
ra + dra/cos(dec).

epoch R years A badly named variable – this defines the mean equinox and
equator for the equatorial coordinates ra, dec,
dra and ddec. The epoch of the coordinates is
actually the observing time. Values less than 1984.0 are
Besselian with coordinates in the FK4 system. Values greater
than 1984.0 are Julian with coordinates in the FK5 system.
You will typically find 1950.0 or 2000.0 here.

evector R radians Position angle of the X feed, to the local vertical.
or evector(nants) If only one value is present, all antennas are

assumed to be identical.
focus(nants) R volts Focus setting (Hat Ck)
freq D GHz Rest frequency of the primary line
freqif D GHz ? (Hat Ck only?)
ifchain ? ? ATNF specific?
inttime R seconds Integration time (see also time)
ischan(nspect) I - Starting channel of spectral window
ivalued(nants) I ? Delay step (Hat Ck)

Used in an attempt to calibrate amp and phase vs. delay.
jyperk R Jy/K The efficiency Jy/K,

calculated during online calibration

jyperka(nants) R
√

Jy/K Antenna based Jy/K,
calculated during online calibration (Hat Ck)

latitud D radians Geodetic latitude of the observatory.
lo1 D GHz First local oscillator (Hat Ck/CARMA)

lo1 is in the range 70 GHz - 115 GHz for 3mm.
lo2 D GHz Second local oscillator (Hat Ck)
longitu D radians Longitude of the observatory.
lst D radians Local apparent sidereal time.
modedesc A - Correlator mode description (CARMA only)

Example: 500-32-8-X-X-X-X-X
mount I - The type of antenna mounts.
or mount(nants) If only one value is given, all antennas

are assumed to be the same. Possible values are:
0: Alt-az mount.
1: Equatorial mount.
2: X-Y.
3: orbiting.
4: bizarre.

name A - ATCA raw RPFITS file name.
nants I - The number of antennas

Following variables use a dimension of nants:

D.1. UV DATASET D-5

antpos(nants, 3)
focus(nants)
phaselo[1-2](nants)
phasem1(nants)
systemp(nants, nspect)
wsystemp(nants, nwide)
temp(nants, ntemp)
tpower(nants, ntpower)
axisrms(2,nants)
dazim(nants)
delev(nants)
The antennas are always numbered starting at 1.

nbin I - Total number of pulsar bins.
nchan I - The total number of individual frequency channels

The following variables have the dimension of nchan:
corr(nchan)

npol I - The number of simultaneous polarisations
nschan(nspect) I - Number of channels in spectral window
nspect I Number of spectral windows

Following variables use a dimension of nspect:
ischan(nspect)
nschan(nspect)
restfreq(nspect)
sdf(nspect)
sfreq(nspect)
systemp(nants, nspect)

ntemp I - Number of antenna thermisters
Following variables use a dimension of ntemp:
temp(nants, ntemp)

ntpower I - Number of total power measurements
The following variable depends on ntpower:
tpower(nants,ntpower)
ntpower is currently 1, could be more later.

nwide I - Number of wideband channels
Variables which depend on nwide are:
wfreq(nwide)
wwidth(nwide)
wcorr(nwide)
wsystemp(nants,nwide)

obsdec D radians Apparent declination of the phase centre/tangent point
at time of observation. See also dec

observer(*) A - The name of the observer
obsline(*) A - The name of the primary spectral line of interest to the observer
obsra D radians Apparent right ascension of the phase centre/tangent point

at time of observation. See also ra

on I - Either 1, 0 or -1, for on, off pointing, and Tsys spectrum resp.
for auto-correlation data.

operator(*) A - The name of the current operator
pbfwhm R arcsec (Deprecated) Primary Beam at Full Width Half Maximum

For Hat Ck, it is approximately 11040.0/lo1.
pbtype(*) A - Primary beam type to be used in imaging.
phaselo1(nants) R radians Antenna phase offset (Hat Ck/CARMA)
phaselo2(nants) R radians Second LO phase offset (Hat Ck/CARMA)
phasem1(nants) R radians IF cable phase for linelength measurements (Hat Ck/CARMA)
plangle R degrees Planet angle
plmaj R arcsec Planet major axis (note units)
plmin R arcsec Planet minor axis
pltb R Kelvin Planet brightness
pntdec R or radians Declination of the pointing center. See epoch for coordinate

D definition.

D-6 APPENDIX D. UV VARIABLES

pntra R or radians Right ascension of the pointing center. See epoch

D for coordinate definition.
pol I - Polarization type of the correlation data. Values

follow the AIPS/FITS convention, viz:
1: Stokes I
2: Stokes Q
3: Stokes U
4: Stokes V
-1: Circular RR
-2: Circular LL
-3: Circular RL
-4: Circular LR
-5: Linear XX
-6: Linear YY
-7: Linear XY
-8: Linear YX

precipmm R mm Mm of precipitable water vapour in the atmosphere.
pressmb R millibar atmospheric pressure.
project(*) A - The name of the current project
purpose(*) A - Scientific intent or purpose

For CARMA: B=bandpass, F=flux, G=gain (phase/amp)
P=polarization, R=radio pointing, S=science target, O=other

ra R or radians Right ascension of the phase center/tangent point. See epoch for
D the definition of the coordinate system. See also obsra

rain R mm The current amount of water in the rain gauge.
The rain gauge is emptied at 9:00 AEST (ATCA).

refpnt(2,nants) R arcsec Reference pointing offsets.
refpnt(1,?) is azimuth offset,
refpnt(2,?) is the elevation offset.

relhumid R % Relative Humidity at observatory
restfreq(nspect) D GHz Rest frequency for each spectral window.

This may be zero for continuum observations.
rmspath R microns RMS path variation (CARMA, for Hat Ck units were %)

see also smonrms
sctype A - Scan type (ATCA?)
sdf(nspect) D GHz Change in frequency per channel
sfreq(nspect) D GHz Sky frequency of (center of) first channel in window
smonrms R µm ATCA seeing monitor rms value (see also rmspath)
source(*) A - The name of the source
srv2k(nants) R ? ??? (Hat Ck)
systemp R Kelvin Antenna system temperatures
or systemp(nants)
or systemp(nants,nspect)

tau230 R - Optical depth at 230 GHz, as measured with the ... system (Hat Ck/CARMA)
tcorr I - HasTsys correction has been applied (0:none, 1:applied) (CARMA, ATNF)
telescop(*) A - The telescope name. Some standard values are:

’ATCA’

’HATCREEK’

’VLA’

’WSRT’

temp R centigr. Antenna thermistor temperatures (Hat Ck)
(nants, ntemp)

themt(nants) R Kelvin temperature of the hemt amplifier (Hat Ck)
tif2(nants) R Kelvin temperature of IF amplifier (Hat Ck)
time D days The time (nominally UT1) stored as a Julian date.

For example, noon on Jan 1, 1980 is 2,444,240.0!
time is also known as preamble(3) or preamble(4)
depending if you have uv or uvw data resp.
time is the midpoint of an integration with length inttime
NOTE ut is at the starting time of an integration

D.2. TELESCOPE SPECIFIC NOTES D-7

tpower R volts Total power measurements (Hat Ck)
(nants, ntpower)

trans R K CARMA
tscale R - Optional correlation scale factor

Used only when corr is stored as J (16 bits).
tsis(nants) R Kelvin temperature of the SIS mixers (Hat Ck)
tsky R - CARMA
ut D radians The time since midnight Universal time (nominally UT1).
veldop R km s−1 The sum of the radial velocity of the observatory

(in the direction of the source, with respect to the rest
frame) and the nominal systemic radial velocity of the source.

veltype(*) A - Velocity rest frame. Possible values for veltype are:
VELO-LSR: rest frame is the LSR
VELO-HEL: rest frame is the barycentre
VELO-OBS: rest frame is the observatory
FELO-LSR: rest frame is the LSR (deprecated)
FELO-HEL: rest frame is the barycentre (deprecated)

version(*) A - The current hardware/software version
Current options: oldhat, newhat
For carma: x.y.z

vsource R km s−1 Nominal radial systemic velocity of source.
Positive velocity is away from observer.

wcorr(nwide) C - Wideband correlations. The current ordering is:
wcorr(1:2) are the digital LSB and USB.
wcorr(3:4) are the analog LSB and USB.

wfreq(nwide) R GHz Wideband correlation average frequencies (center?)
wind R km/h Wind speed in km/h (ATCA)
winddir R deg Wind direction (where the wind is blowing from)

(note: originally encoded as ‘N’, ‘SE’, ‘W’, etc.)
windmph R mph Wind speed - in imperial units!
wsystemp R K System temperature for wide channels.
or wsystemp(nants)
or wsystemp(nants,nwide)

wwidth(nwide) R GHz Wideband correlation bandwidths
xsampler R percent X sampler statistics (ATCA).
(3,nants,nspect)

xtsys(nants,nspect) R Kelvin System temperature of the X feed (ATCA).
xtsysm(nants,nspect) R Kelvin ???
xyamp(nants,nspect) R Jy On-line XY amplitude measurements (ATCA).
xyphase R radians On-line XY phase measurements (ATCA).
(nants,nspect)

ysampler R percent Y sampler statistics (ATCA).
(3,nants,nspect)

ytsys(nants,nspect) R Kelvin System temperature of the Y feed (ATCA).
ytsysm(nants,nspect) R Kelvin ???

D.2 Telescope specific notes

A reminder on some telescope specific variables

D.2.1 ATCA

calcode

name

rain

sctype

D-8 APPENDIX D. UV VARIABLES

smonrms

wind

xsampler(3,nants,nspect)

xtsys(nants,nspect)

xyamp(nants,nspect)

xyphase(nants,nspect)

ysampler(3,nants,nspect)

ytsys(nants,nspect)

D.2.2 CARMA

dazim(nants)

delev(nants)

modedesc

axisrms "skyErr" -- temporary sqrt(2) issue

axisoff

lo1 changes, phaselo1=0

lo2 still absent

purpose

D.2.3 SZA

ambpsys(nants,nspect) ambient Psys

pamatten(nants) PAM attenuation

psys(nants,nspect) Psys

psysattn(nants,nspect) Psys attenuation

D.2.4 SMA

chi2

D.2.5 BIMA/Hat Creek

Although the telescope name is for historic reasons called HATCREEK, they are really the 6m BIMA antennae,
but while this array was operational at the Hat Creek site in Northern California. The following UV
variables were specificially used for this array, although some of them moved to CARMA as well:

atten(nants)

cable(nants)

corbit

corbw(2)

corfin(4)

cormode

coropt

cortaper

delay(nants) carma

delay0(nants)

dewpoint

focus(nants)

freqif

ivalued(nants)

lo1 carma

lo2

phaselo1(nants) carma

phaselo2(nants) carma

phasem1(nants) carma

rmspath carma

D.3. EXAMPLES D-9

srv2k(nants)

tau230 carma

temp(nants, ntemp

themt(nants)

tif2(nants)

tpower(nants, ntpower)

tsis(nants)

D.3 Examples

Quite technical, but if you ever need to go into the guts of a MIRIAD dataset, these references on our
standard CARMA fringe dataset may be helpful:

% ls -l fringe.3C273.2008jun18.4.miriad

total 568

-rw-r--r-- 1 teuben teuben 12688 2008-06-19 11:27 flags

-rw-r--r-- 1 teuben teuben 132 2008-06-19 11:27 header

-rw-r--r-- 1 teuben teuben 0 2008-06-19 11:27 history

-rw-r--r-- 1 teuben teuben 646 2008-06-19 11:27 vartable

-rw-r--r-- 1 teuben teuben 545228 2008-06-19 11:27 visdata

-rw-r--r-- 1 teuben teuben 852 2008-06-19 11:27 wflags

% itemize in=fringe.3C273.2008jun18.4.miriad

itemize: Version 1.4, 2008/02/19 20:06:29 UTC

obstype = mixed-auto-cross

nwcorr = 6552

ncorr = 98280

vislen = 545232

visdata (binary data, 545228 elements)

history (unknown data, 0 elements)

wflags (integer data, 212 elements)

vartable (text data, 650 elements)

flags (integer data, 3171 elements)

% uvio fringe.3C273.2008jun18.4.miriad

uvio Version 14-jan-09 pjt

0x00000000 FILE: (null)

0x00000000 SIZE: airtemp Count=1,Type=r

0x00000008 DATA: airtemp 25.66670036

0x00000010 SIZE: antaz Count=15,Type=d

0x00000018 DATA: antaz 125.0117534

0x00000098 SIZE: antel Count=15,Type=d

0x000000a0 DATA: antel 39.66323054

0x00000120 SIZE: antpos Count=45,Type=d

0x00000128 DATA: antpos 17.69928734

0x00000298 SIZE: axisoff Count=15,Type=r

0x000002a0 DATA: axisoff 0.002540719928

0x000002e0 SIZE: axisrms Count=30,Type=r

0x000002e8 DATA: axisrms 1.447669983

0x00000368 SIZE: cable Count=15,Type=d

0x00000370 DATA: cable 1555.279097

...

0x000010b8 SIZE: time Count=1,Type=d

0x000010c0 DATA: time 2454636.497 08JUN18:23:55:16.0

0x000010d0 SIZE: baseline Count=1,Type=r

0x000010d8 DATA: baseline 257

0x000010e0 ========== EOR (1) ========

0x000010e8 DATA: wcorr 1.041832447 0

0x00001120 DATA: tscale 4.079189966e-05

0x00001128 DATA: corr 13059

0x00001298 DATA: baseline 514

0x000012a0 ========== EOR (2) ========

D-10 APPENDIX D. UV VARIABLES

0x000012a8 DATA: wcorr 1.045531988 0

...

0x00084fe0 DATA: baseline 3343

0x00084fe8 ========== EOR (1091) ========

0x00084ff0 DATA: wcorr 12.95456219 12.70519161

0x00085028 DATA: tscale 0.0007510706782

0x00085030 DATA: corr 9063

0x000851a0 DATA: coord 46.79749408

0x000851c0 DATA: baseline 3599

0x000851c8 ========== EOR (1092) ========

(7114 lines)

Appendix E

CARMA Data

As a reminder, here we summarize some of the peculiarities of CARMA MIRIAD visibility data if you
have been used to BIMA, SMA, WSRT or ATNF data.

E.1 Oddities

1. All CARMA data have auto-correlations preceding the cross-correlations. Some calibration pro-
grams, most notably selfcal and mfcal, cannot handle this? File bugzilla ? Use the select=-auto
keyword to filter them out.

2. Some of the correlator setting has half edge channels and should always be flagged.

3. Most CARMA data have a noise source added, which can be used for bandpass calibration. However,
be sure not to apply linelength or baseline corrections to these data. Use select=-source(noise)
to filter them out.

E.2 Data Versions

Sometimes it is useful to know at what stage your CARMA data has been taken, and at what stage the
data was (re)filled by the Data Archive. A special uv variable version is used to label this formal data
version:1

% uvlist vis=cx012.SS433.2006sep07.1.miriad options=var,full | grep version

UVLIST: version 4-may-06

version :0.1.2

E.3 version

Here is the log of data versions. Those annotated with [refill] should be refilled in order to see the
corrected data. The various stages of baseline corrections are not maintained here, see Section 6.5.2.

• 2006/02/01: (VERSION 0.1.2)

• 2006/12/01: noise source sufficiently amplified for narrow band passband calibration

1see also: carma/sdp/AstroHeaderWriter.cc: astroHdrMap p.putString(”version”, ”1.0.1”, 1);

E-1

E-2 APPENDIX E. CARMA DATA

• 2006/12/xx: correlator now handling all windows on all baselines

• 2007/01/xx: auto-correllations added [refill]

• 2007/01/11: intent (uv variable purpose added), e.g. select=purpos(b)

• 2007/01/xx: fixed cross-talk other subarrays that stored some uv variables as 0 (bugzilla #376?)

• 2007/01/31: jyperk now correctly made baseline dependant for proper invert weighting (bugzilla
#339) [refill]

• 2007/02/08: (VERSION 1.0.1) new convention of storing skyErr monitor point in axisrms [refill]
(CVS 1.80)

• 2007/03/23: baselines updated. All data between Jan 8 and March 23 should be patched manually
using uvedit.

• 2007/03/??: blanking activated

• 2007/05/24: line-length corrections activated

• 2007/11/26: amplitude decorrelation fixed; use uvdecor see E.4.5) to fix

• 2007/12/04: source name confusion (bugzilla #564) fixed (btw, we’re at data version 1.0.3!!)

• 2008/01/23: fixed minor antenna pad correction rotation; data before this ALWAYS need baseline
corrections applied

• 2008/03/31: frequent semi-automated updates of flux calibrator lists (FluxSource.cat in both
CARMA and MIRIAD)

• 2008/04/20: better models for mars brightness temperature (see also miriad’s marstb program)

• 2008/11/xx: PACS (SZA) data now routinely available. Usually place a ’z’ in front of your ct or
cx file but these are not integrated into the Illinois archive.

• 2008/12/22: planet data properly tagged in the first 10-20 sec after a switch from NOISE source
(bugzilla #695).

• 2008/12/31: all data on this day have a leapsecond error: uvedit time=-1 to fix.

• 2008/02/01: PACS (SZA) data now available via NCSA archive

• 2009/03/xx: tau230 was changed from CARMA’s Weather.tau225 to OpacityMonitor.tau225

E.4 Historic Data Correction

In past times certain data corrections were needed that have since then been moved into the data filler
or at the telescope monitor point level. The latter type can normally not be solved by refilling the data.

E.4.1 Axis offset correction

An axis offset correction is normally never needed. Only early engineering data (before January 5, 2007)
need this axis offset correction. Example of usage:

axcor vis=xxx.mir axoff=@axoff.comb.070101 out=yyy.mir

Also note the axcor program may not be installed with your version of Miriad.

E.4. HISTORIC DATA CORRECTION E-3

E.4.2 jyperk (bugzilla 339)

Data before ’xxx’ confused the scalar jyperk with the deprecated array jyperka antenna based array. In
order to correct this data, such that programs like invert will correctly compute the noise characteristics
of the resulting image, use the jyperk program:

jyperk vis=xxx.mir out=yyy.mir

One can optionally supply an array of Jy/K values for the 15 antennae, but the current values in the 65
and 145.3 for OVRO and BIMA antennas resp.

See also bugzilla bug # 339.

E.4.3 Flagging based on tracking errors (bugzilla 376)

The axisrms UV variable holds the tracking error (in arcsec, in Az and El) for each antenna in the array.
It can be useful to automatically flag data when the tracking is above a certain error, or even antennae
based (e.g. allow OVRO to have a smaller tolerance than the BIMA antennae). In older data the axisrms
was not written properly, and could even be negative. It is currently written

√
2 times what it really

should be. But check your plots!

% varplt vis=c0048.umon.1.miriad device=/xs yaxis=axisrms options=overlay yrange=-4,4

% uvflag vis=c0048.umon.1.miriad ’select=-pointing(0,4)’ flagval=flag options=noapply

this last example shows the number of visibilities that would be flagged if their RMS pointing was off by
more than 4 arcsec.

E.4.4 Incorrect source name in miriad file (bugzilla 564)

Should be obvious looking at the output of listobs. oct/nov 2007. still looking into this. Fixed Dec 3,
2007. Always been present, but never showed up until the last few months. Load on acc seems to have
triggered this bug in MAW data avering. If your data is mislabeled, a careful uvcat, puthd the source
name could fix it. But for mosaic’d observations the pointing center would probably be mis-averaged,
and although the visibility data seem to be ok, the data processing would be affected. The advice is to
flag the time range of the mislabeled source, since they are small portions of your track, but if you want
to get the most out of the data, are careful uvcat/puthd combination may get you there.

E.4.5 Amplitude Decorrelation

All data taken before November 26, 2007, are subject to a small amount of amplitude decorrelation
dependent on the difference in delay length between the two antennas in a baseline. The program
uvdecor attempts to correct for this:

% uvdecor vis=xxx.mir out=yyy.mir delaymax=8550

Note that the integration times (now baseline based) are adjusted (decreased) to account for the increased
noise on baselines with longer antenna delay differences. The value of delaymax=8550 (nanoseconds) was
emperically determined from good fringetest data in the 2007 B array, in which the amplitudes dropped
linearly with delay differences. The delaymax value is where the amplitude would have dropped to 0!

E-4 APPENDIX E. CARMA DATA

Especially if your source is extended, it is highly recommended to play with this option for B-array data
(with delays up to 6000 ns, decorrelation up to 70%) but even in C-array data (delays up to 2000 ns,
decorrelations up to 25%) it should be considered.

E.4.6 Baseline Correction

All data prior to January 23, 2008, should have their baseline corrected. See also Section 6.5.2. Use
uvedit and the appropriate baseline file

Appendix F

Formularium

In this Appendix we summarize various formulae and list constants used in MIRIAD and interferometry.

F.1 Interferometry

F.1.1 Antennae positions

The uvgen/ant=/baseunit= keywords control the antennae positions of an array. These can be specified
in either an equatorial system or a local (topocentric) system. The conversion between the two is con-
trolled as followed. A miriad dataset records the antennae positions in the antpos UV variable, which
records them in nanoseconds in a local equatorial coordinate system with the X axis pointing outwards
from the local meridian. The conversion of these to a local topocentric system is:

E,N,U = cos lat, sin latX, Y, Z

and the relationship betwen UVW and XYZ is, in a right-handed coordinate system (XY in the equatorial
plane, X meridian, Y to the east, Z towards the north pole)

u = sinHcosH0Xv = −sindcosHsindsinHcosdY w = cosdcosH − cosdsinHsindZ

where H is the hour angle, δ the declination.

F.2 Constants

In $MIRINC/mirconst.h various constants are listed that the code uses. For some a double as well as
single precision value is present.

PI = 3.14159265358979323846 pi

CMKS = 299792458.0 Speed of light (meters/second)

KMKS = 1.380658E-23 Boltzmann constant (Joules/Kelvin)

HMKS = 6.6260755E-34 Planck constant (Joules-second)

HOVERK = 0.04799216 Planck constant divided by Boltzmann constant (Kelvin/GHz)

F-1

F-2 APPENDIX F. FORMULARIUM

F.3 Calibration

F.3.1 Line Length Calibration

Line length calibration works by utilizing the LO1 frequency, ν0, and sending a signal along the fiber to
each antannea, and accurately measuring the round trip time. Half this time is stored in the delay UV
variable (in ns) in a MIRIAD dataset. At the LO1 reference frequency this would amount to a slowly
drifting phase correction, computed to be between −π and π, and stored in the phasem1 UV variable (in
radians):

φi = 2π(ν0Li mod 1)− π

The linecal program then stores these antenna base phases from phasem1 as time dependant complex
gains in a standard MIRIAD gaintable

gi = eiφi

and can be applied via commands such as uvcat. Note that this procedure does not apply any bandpass
slope.

Recall that the LO1 frequency, ν0, is generally doppler tracked, so some of the variations you will see with
programs such as varplt will be due to a doppler shift component due to earth rotation. The maximum
peak-to-peak variation in the earth rotation is 0.46 km/s, or 0.15 MHz at 100 GHz. For a typical 100m
(fiberlength difference) baseline this would be about 150.

An alternative is uvcal options=linecal,avechan, which takes into account that the measurements
in phasem1 were taken at LO1 and takes out an additional frequency dependant phase slope based on
ν/ν0(φi − φj). Accross a typical 500 MHz band at 3mm this would amount to about 20.

F.3.2 Passband Calibration

mfcal solves for antennae based complex gains bi(ν), and corrects the visibities as follows:

V
′

ij = bib
∗

jVij

F.3.3 Gain Calibration

selfcal solves for antennae based complex gains, gi(t), and corrects the visibities as follows:

V
′

ij = gig
∗

jVij

Note that a gain larger than 1 means a loss of signal (e.g. due to bad pointing) where the observed
visibilities needed to be multiplied by larger numbers to get back to the expected flux.

F.3.4 Buddy Phase Calibration

There are two implementatons of phase calibrating using a nearby buddy (SZA) antenna operating at
around 30 GHz (1cm).

F.3.5 Interpolation

The time interpolation formulae1 that computes a baseline based gain at time t, from antenna based
gains gA and gB that had been computed at two surrounding times, t1 < t < t2, is given by the following

1See also $MIRSUBS/uvgn.for::uvGnFac()

F.4. DOPPLER SHIFT I-3

expression:

G = gA,2(1 + (

∣

∣

∣

∣

gA,1

gA,2

∣

∣

∣

∣

− 1)ǫ)

(

gA,1

gA,2

)ǫ

g∗B,2(1 + (

∣

∣

∣

∣

gB,1

gB,2

∣

∣

∣

∣

− 1)ǫ)

(

gB,1

gB,2

)

−ǫ

and for a phase-only selfcal solution, where |g| = 1, this simplifies to:

G = gA,2g
∗

B,2

(

gA,1

gA,2

)ǫ (
gB,1

gB,2

)

−ǫ

where ǫ in [0,1]

ǫ =
t2 − t

t2 − t1

F.4 Doppler Shift

CARMA spectral line data are normally doppler tracked. In addition channels are linear in frequency
space, so you will find that we employ the (non-relativistic) radio definition of the doppler shift:

Vr =
(νo − ν)

νo
c =

(λ− λ0)

λ
c

instead of the optical definition:

Vo =
(λ− λ0)

λ0

c =
(νo − ν)

ν
c

then, VELO is used to label an axis in the radio convention, and FELO when the axis is regular in
frequency, but expressed in the optical convention.

In MIRIAD a few UV variables are used to describe this:

• restfreq

• sfreq

• sdf

• vsource Nominal radial ; a constant normally (but not for planets)

• veldop Sum of radial vel of observatory and that of source

Thus for a doppler tracked frequency, ν, the corrected frequency would be

ν′ = ν

The relativistic convention for radial velocities is not implemented at CARMA yet.

Index

autocorrelation, 6-14
axcor, E-2
axis offset, E-2

baseline correction, 6-9
birdies, uvflag, 6-6
bugzilla, 409, 6-9
bugzilla,339, E-3
bugzilla,376, E-3

curl, 6-2

Data Archive, 6-1
decorrelation, amplitude, E-3

jyperk, E-3

linelength correction, 6-10
listobs, 6-3

marstb, 6-20, E-2
mdsum, 6-8

noise source, 6-14

phasem1, 6-10

SHELL, environment, A-1
spectral windows, 6-6

uvdecor, E-3
uvedit, 6-9
uvindex, 6-5
uvio, D-1
uvlist, 6-6, D-1
uvwide, 6-11

vartable, visibility item, D-1
visdata, visibility item, D-1

wget, 6-2

I-4

