Levi-Civita formulation

2D system: wuq, uo

Ry = uj —u;
R2 = 2u1u2
Transformation
R = L(u)u

Levi-Civita [1920] matrix

Uy —uU

L(u) = = R=uj+u;

U2 Uy

Definition R? = R - R with R’ = 2£(u)u’ and R = R'/R

R =2L(u)u'/R

R’ =2u/L"(u)/R and LT (u)L(u) = RI give
R’ R=4u -u/R

Final equation of motion, with u-u = R

1 1
u’ = éhu + QR,CT(U.)FM

Binding energy per unit reduced mass

h=[2u-u — (my+my)]/R

Rate of change from R - R

d 1-2 (mk+m1) L
a2 TR =R-Fy

Conversion by /' = R’ - Fj; and R
h/ = 211/ . LT(U)FM



KS formulation

2D system: uq, ug

R, = u% — u%
R2 = 2u1u2
Transformation
R = L(u)u

Levi-Civita [1920] matrix

U —uU9

L(u) = = R=uj+u;

Uz Uy

Matrix properties (Stiefel & Scheifele 1970)

) = RI
L'(u) = L(u)
Lu)v = L(v)u
u-ul(v)v — 2u-vL(u)v+v-vL(u)ju=0

Second & third properties give
R’ = 2L(u)u’

From £'(u) = L(u)

R" = 2L(u)u” + 2L (u" )W’

Substituting R, R/, R’ = 2u’ - u and n = 1 in smoothed R”

2u-ul(u)u” + 2u-ul(u)u’ —4u-v'L(u)u’ +
+ (my +my)L(u)u = (u-u)’Fy



Simplification by fourth property

2u-ul(u)u’ —2u’ - u'Lw)u+ (my+my)L(u)u = (u-u)’Fyy

Multiply by £71(u) and first property
1
u’ + {[(my +my) —2u’-u]/2u - ulu = S ul’ (w)Fy,

Definition R> = R” - R with R’ and R = R'/R

R =2L(u)u'/R

R” = 2u/L7(u)/R and orthogonality condition

R R=4u-v/R

Final equation of motion, withu-u =R

1
u =

1
= éhu + QRLT(U.)FM

Binding energy per unit reduced mass

h=[2u-u — (my +my)]/R

Rate of change from R - R

d 1. (mk—i—ml) :
— |-R* — =R-F
dt |2 R &

Conversion by /' = R’ - Fj; and R
h/ == 211/ : ,CT(H)FM



Generalized 4 x 4 matrix

_ul —Uy —U3 Uy ]
Uz Uy —U4 —U3

L(u) =

Uz Uy U1 U9

U4 —U3 U2 —Up |

Explicit components of R

Ry = uj —u3 —ui +uj
Ry = 2(uyus — uguy)
Rs = 2(ujus + usuy)
Ry, =0

Summing the squares and square root

2 2 2 2
RZU1+UQ+U3+U4

Case Ry > 0: combine Ry and R

up 4 uy = %(Rl + R)
Redundancy uy = 0

up = [%(Rl + R)]'?

Uy = %Rg/ul

U = }Rg/ul

2




Case R; < 0: subtract R; from R

1
u; +ui = —(R — Ry)

2
Redundancy ug = 0
1
Uy = [5(3— Ry)]Y?
1
Uy = éRQ/UQ
1
Uy — 5R3/U2

Regularized velocity: invert R’ and use first property

1 1 .
u = 5cT(u)R’/R — 5cT(u)R

Final equations of motion

1 1
11” = éh u + QR LT Fkl
h/ = 2 11/ . ,CT Fkl

! = u-u

Semi-major axis

1
a = —é(mk +my)/h

Eccentricity: R = a(1 — ecosf) and nt = 0 — esinf

e’ = (1 - R/a)*+4(u-u)?/[(my, +my)a]

Bilinear relation: R, = 0

/ / / /
UgU] — UUy + UgUs — UrUy = 0



Unperturbed two-body motion
Maximum force:
J = max; (mi/‘ri_rcmP), 1=1,N
Smallest inverse travel time
Bs:rs'rs/rgy s — Ty = T

Perturber boundary
ry = R[210 ) (mymin)]
Travel time: r, < 0

Aty = (7"3 - 7“7)/‘7.“3| ’

Free-fall time

Aty = 2At7r2 ) (my + my)] 2

Return time of dominant body

Aty = [2(rj — 1)1}/ (my +my)]'?
Unperturbed time interval

At = min (Atiy, At,, At;, Atep)
Unperturbed periods

1
K = 1+§Atv/t;{

Final time interval

At = K min (tg, Aten)



KS algorithms

Perturber prediction

1 1
r, = ((6F<1> ot; + SF) oty + vo) 0t} + 1o
, 1

KS prediction

u and u’ to order u®

Basic Hermite
Stabilization factor in u”
h predicted to order h(?)

KS transformations
Global coordinates and velocities 1, 1, T3, 1]

Physical perturbation
P and P due to perturbers, set PP=RP
4 > N: can. approximation or components

Slow-down factor
Include x in P and P, alsot! = ku-u

Energy prediction (Stumpff method)
h to order h*

KS corrector
u, u’ to order u® and h to h¥

Time derivatives
Taylor series ¢/ = 2u-u/, ..., 10 = 2u-ul®+...



Hermite KS

Standard KS

1 1
u = éhu—k §R£TFkl
h/ = 2 Ll/ . LT Fkl
t = u-u
New notation
F, = u
Q = L'P,

with P = Fy; as the perturbing force.

Basic equations

1 1
5 u+2 Q
o= 2d-Q

t = u-u
Hermite F, F’ formulation
1 1
F, = -h —R
5 u + 5 Q

1
F = é(h’u + hu' + R'Q + RQ')

= 2d-Q
W= 9F, Q4+ 2u'- Q'
' = u-u

The derivatives of P, Q and t" are readily available. Note that
P’ = RP and that £ (u’) can be obtained by substituting u’
for u. For implementation, significant accuracy can be gained
by high-order prediction (not used in standard Hermite).



N-body interface

Centre of mass acceleration

| (mka + mZFl)/(mk + ml)

Global coordinates

ry = Tep+ pR/my

I Fem — MR/ my

Relative perturbation

v = ‘Fk — F1|R2/(mk + mg)

Tidal approximation

Ty = R[Qm/(mk + ml)%nin]l/g, Yrmin =2 1079

Perturber selection

Tij < T, R=a(l+e)

Regularized time-step

AT = n,(1/2|h)Y?1/(1 4 10007)"/?

Physical time-step

o1
At = S —tFALk n=06
=1 k!

Time derivatives

ty = 2u’'-u

1 = ou” - u+2d-u



