User Guide for falcON

version of September 24, 2007

Summary. £alcON is the “Force Algorithm with Complexity O(N)” which is
described by Dehnenl (2000, 2002). With this package, you can use falcON in
subroutine form as Poisson solver for particle based simulations. The package also
has a full N-body code, based on falcON, called gyrfalcON (“GalaxY sim-
ulatoR using falcON”), which employs the N-body tool box NEMO. This code
features individual adaptive time steps employing a block-step scheme, but can also
be used in single-time-step mode (in which case momentum is exactly conserved).
Additionally, there are several other programs and facilities that may prove useful
for setting-up, running, and analyzing /N-body simulations.

1 Guarantee

This package comes with absolutely no guarantee whatsoever! The unpacking, installation, and usage of the
code is entirely at the risk of the user alone.

2 Credit

Any scientific publication or presentation which has benefited from using £a1lcON in subroutine form or from
using any of the programs gyrfalcON, getgravity, or addgravity should quote the papers

Dehnen, W., 2000, ApJ, 536, L39

Dehnen, W., 2002, JCP, 179, 27.
(please find the .pdf file of the latter paper in the subdirectory falcON/doc.) Papers that did not use these
but other parts of this packages should acknowledge that whereby explicitly mentioning me (Walter Dehnen)
as author of the code.

3 What is new?

This section has been added to the user guide in 2004; earlier changes are not all reflected here.

February 2007 Three new NEMO| executables have been added to the package: g2s, s2g, and s2s. The
first two provide quite nifty conversion between gadget data files and nemo snapshots, see man pages for more
details, while s2 s is very similar to NEMO’s snapcopy, except that is can copy all data supported by falcON
I/0.

August 2006 The public version of £alcON has been put under CVS control under the NEMO) package. This
should significantly simplify installation, updating and downloading.
Some changes in the directory structure and filenames (FA1CON—forces).

July 2006 In order to allow their usage at the GH2006 summer school, several parts of the code have been
migrated from the proprietary section into the public part. Of particular interest are extensions to the ma-
nipulators and support for communication between manipulators, as well as bodyfunc.h, which supports
simple functions of a body (and time + parameters) to be generated on the fly given a user-provided string
in some simple syntax (see man pages (lbodyfunc) and (5bodyfunc); this is very similar to, but
more powerful than, NEMO’s bodytrans). Parts of the code have been documented using doxygen, see
falcON/dox/htlm/index.ht1lm for details (partly due to my inexperience with doxygen this documen-
tation is very preliminary and incomplete, but should still be useful for anybody using the £a1lcON library or
using manipulators).

http://www.astro.umd.edu/nemo
http://ukads.nottingham.ac.uk/cgi-bin/nph-data_query?bibcode=2000ApJ...536L..39D&db_key=AST&link_type=ARTICLE
file:2002JCP...179...27D.pdf
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo

April 2006 Some pieces of code which are not £alcON specific have been taken out and put into a utils
package, which resides in directory ut i1s parallel to directory £alcON, but there are some dynamic links.
The ut i1s package uses namespace WDut i1s and provides some generally useful code. It must be compiled
before £alcON.

September 2005 A lot of changes have been introduced with this release, some of them affecting the users,
for instance the change of the namespace’s name from nbdy to falcON. Several files have been re-named to
better describe their contents.

The body data layout has been changed so that adding and removing bodies becomes possible (the files
body.h & body.cc and io.h & io.cc (previously nmio.h & nmio.cc) have been completely re-
written). In this process, two new routines get _data_blocked () and put_data_blocked () have been
added to NEMO.

When a £alcON executable, like gyrfalcON, is run without any command-line arguments, the he1p=h
argument is assumed. Output file names may be appended with an ‘!’ or ‘2’ to indicate that existing files shall
be overwritten or appended to, respectively.

To startup £alcON, the shell-script file falcON_start should be sourced, which also tries to start NEMO.
While the £a1cON library is still dynamically linked, there is no need anymore to set the LD_LIBRARY _PATH
environment variable (the executables know where to link to).

For FORTRAN and C users, the ordering of vector-typed arrays has been changed: where formerly three
arrays of size N for the x, y, and z components were required, we now expect one array of size 3/N with the
order xq, Yo, 205 L1, Y1, 21 -« -+

September 2004 The time integrator has been completely re-written (used to be in inc/nbdy .h; now in
inc/public/nbody.h). Tests indicate that it behaves as the old one (but is easier to maintain and extend).

gyrfalcON allows now for run-time manipulators, see §12]below and also the man page for gyrfalcON.
For them to work, you need the enviroment variable FALCON to be defined.

15¢ July 2004 The gyrfalcON options potname, potpars and pot £ile have been replaced by accname,
accpars and accfile, respectively. This reflects the change in using an external acceleration field rather
than the old-style NEMO potential.

19t May 2004 All NEMO programs in this packages come with man pages, which replace the detailed docu-
mentation in this file.

14'" May 2004 The NEMO programs mkdehnen, mkking, and mkplum have been added to the public
version of this package, see §11.2|for details.

April 2004 We now use a dynamic library 1ibfalcON. so instead of 1ibfalcON. a, so that you must
put the directory it resides in into the LD_LIBRARY _PATH enviroment variable, otherwise, the code will not
work; see also

September 2003 Individual, but fixed, softening lengths have been added to the public version. See §5|below.

4 Installation
Since August 2006, (the public version of) £alcON is under CVS control within the NEMO package and you
are strongly advised to install and initialize falcON using NEMO.

If you are interested in using £a1cON standalone, i.e. only use it as a library for your force computation or
SPH neighbour search, then you may still obtain fa1lcON from NEMO, but must compile it without the NEMO

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo

enviroment variable set. In this case, only two executables will be made: TestGrav and TestPair, the first
allows testing of the gravity approximation, the second the search for SPH interaction partners.

Compiler Issues
You need to make the library 1ibfalcON. so and, possibly, the executables you want to use. The code is
written entirely in C++ and it is strongly recommended to use a compiler that understands standard C+ I
recommend GNU’s gcc versions 3.4 or Intel’s icc version 8.0 or higher. By default, we use gcc, if you want
to use another compiler, edit the file makedefs and change the entry for COMPILER.

You may also edit the optimization flags in file makedefs. This applies particularly to Intel’s i cc com-
piler, which allows processor specific switches.

5 Individual Softening Lengths
Individual softening lengths are enabled, but not obligatory (in fact default is always to have a globally constant
€), if line 21 of the Makefile

DSOFT := -DfalcON_INDI

is not commented out (by a # in the first column).

The softening length €;; used in the interaction of nodes with individual softening lengths €; and €, is simply
the arithmetic mean of the two. The softening length ¢; of a cell is the arithmetic mean of the softening lengths
of all its bodies.

6 Testing falcON
Please run TestGrav in order to get some rough check on the validity of your library. Issuing the command
TestGrav 2 1 1000000 901 0.01 1

shall generate a Hernquist sphere with N = 100 particles, build the tree (twice: once from scratch and once
again) and compute the forces using a softening length of e = 0.01 scale radii with the P; kernel (see §7). The
output of this command may look likeE]

time needed for set up of X_i: .64

0

time needed for FAICON::grow() : 1.21
time needed for FALICON::grow() : 0.59
time needed for FALlCON::approximate_gravity(): 4.77
state: tree re—-grown
root center: 00O
root radius: 1024
bodies loaded: 1000000
total mass: 1
N_crit: 6
cells used: 353665
of which were active 353665
maximum depth: 21
current theta: 0.6
current MAC: theta (M)
softening length: 0.01
softening kernel: Pl
Taylor coeffs used: 83880 in 4 chunks of 22108
interaction statitics:

type approx direct total
body-body : - 0 0 = 0%
cell-body : 2138354 484564 2622918 = 18.427%
cell-cell : 11302423 254979 11557402 = 81.194%

'If you use a compiler version different (usually newer) than those against which this package was tested, you may get warnings
or even error messages. These do not point to genuine errors in the code but rather reflect the fact that C++ compilers do not fully
implement the standard but converge there with every new version. I would appreciate if you, in such a case, could email me the error
messages together with details of the compiler and system used.

% Code compiled with gcc version 3.3.4, run on an AMD Opteron (tm) with 2190Mhz and 1024Kb cache size.

Newtonian

potential

0.8

0.6

0.4

1
===

0.2

T

7

0.01

0.001

0.0001

|density]

Condld v vl el vl b by b P b |

o T T T T T T

o~

Figure 1: Potential, force, and density for the softening kernels of the table, including the standard Plummer softening (Po). The
softening lengths e are scaled such that the maximum force equals unity. The kernels P~ approach Newtonian forces more quickly at
larger r than does Py. The kernels P2 and P3 have slightly super-Newtonian forces (and negative densities) in their outer parts, which
compensate for the sub-Newtonian forces at small 7.

cell-self : -
total 13440777

53928
793471

53928 =
14234248 =

0.379%
100.000%

ASE (F) /<F"2>
max (dF) "2
Sum m_1i acc_i =

0.001392818172
0.8913656473
3.240235305e-10 1.787507139%9e-09 2.572656954e-09

Note that the second tree-build is much faster then the initial one. Note also the the total-momentum change
(last line) vanishes within floating point accuracy — that’s a generic feature of £alcON.

7 Choice of the Softening Kernel and Length
The code allows for various forms of the softening kernel, i.e. the function by which Newton’s 1/ is replaced
in order to avoid diverging near-neighbour forces. The following kernel functions are available (z := r/€)

name | density (is proportional to) ag | ao f
P, (1 + 22)=5/2 oo | 0o 1
P (1+ 22772 T | oo 1.43892
P, | T 4+22)72 -2 +2%)72 |0 | 2.07244
Py |91+ 22712 41+ 2272 |0 | —n/40 | 2.56197

Note, that Py is the standard Plummer softening, however, recommended is the use of P; or P». There are
several important issues one needs to know about these various kernels.

4

First, the softening length € is just a parameter and using the same numerical value for it but different kernels
corresponds in effect to different amounts of softening. Actually, this softening is strongest for the Plummer
sphere: at fixed €, the maximal force is smallest. In order to obtain comparable amounts of softening, larger e
are needed with all the other kernels. An idea of the factor by which ¢ has to be enlarged can be obtained by
setting € such that the maximum possible force between any two bodies are equal for various kernels. The last
column in the previous table gives these factors. Note, that using a larger e with other than the F kernel does
not mean that your resolution goes down, it in fact increases, see Dehnen|(2001)), but the Poisson noise is more
suppressed with larger e. It is recommended not to use Plummer softening, unless (i) you want € = 0, (ii) in 2D
simulations, as here ¢ is the average scale-height of the disk, and, perhaps, (iii) in simulations made to compare
with others that use Plummer softening (for historical reasons).

Second, as shown in |Dehnen| (2001), Plummer softening results in a strong force bias, due to its slow
convergence to the Newtonian force at 7 > e. This is quantified by the measure ag, which for Fy is infinite.
In Dehnen| (2001)), I considered therefore other kernels (not mentioned above), which have finite support, ie.
the density is exactly zero for » > e. This discontinuity makes them less useful for the tree code (which is
based on a Taylor expansion of the kernel). In order to overcome this difficulty, the kernels P; to P, which
are continuous in all derivatives, have been designed as extensions to the Plummer softening, but with finite ag
(Py), zero ag but infinite as (P»), or even zero ag and finite as (Ps).

8 Choice of the Tolerance Parameter

The code falcON approximates an interaction between two nodes, if their critical spheres don’t overlap. The
critical spheres are centered on the nodes’ centers of mass and have radii

Terit = Tmax/‘g @

where 7.5 1S the radius of a sphere that is guaranteed to contain all bodies of the node (bodies have r,,x = 0),
while 6 is the tolerance parameter. The default is to use a mass-dependent § = (M) with 6y = 0(Mio)
being the parameter, see Dehnen| (2002). For near-spherical systems or groups of such systems, 8y of 0.6 gives
relative force errors of the order of 0.001, which is generally believed to be acceptable. However, the force error
might often be dominated by discreteness noise, in which case a larger value does no harm. For disk systems,
however, a smaller tolerance parameter, e.g. 6y = 0.5, might be a better choice.

The recommendation is to either stick to 6y no larger than about 0.6, or perform some experiments with
varying g (values larger than 0.8, however, make no sense, as there is hardly any speed-up).

9 Use of falcON as Poisson Solver in Your Code

You may use falcON like a subroutine in your existing code to serve as a Poisson solver for a particle distri-
bution.

9.1 With C++

In order to make use of the code, you need to insert the C macro
#include <falcON.h>

somewhere at the beginning of your C++ source code. Make sure that the compiler finds the file falcON.h by
including -I S$FALCON/inc among your compiler options. The usage of the code in your application is ex-
plained in gory detail in the file FA1CON. h (don’t forget that class FA1CON lives in namespace £alcON).
In order to make an executable, add the linker options ~L. $SFALCONLIB /l1ib -1falcON -1m so that
the library will be loaded at runtime.

For examples of code using FA1CON. h, see the file TestGrav. cc in subdirectory src/mains/, which
may be compiled by typing make TestGrav and produce a short summary of their usage when run without
arguments.

9.2 WithC

In order to make use of the code, you need to insert the C macro
#include <falcON_C.h>

somewhere at the beginning of your C source code. Make sure that the compiler finds the file falcON_C.h
by including -I falcON/inc among your compiler options. The usage of the code in your application is
explained in gory detail in the file falcON_C.h. In order to make an executable, add the linker options —L
SFALCONLIB /1ib -1falcON -1lstdc++ -1m so that the library will be loaded at runtime.

For examples of code using FA1CON_C. h, see the file TestGravC. cc in subdirectory src/mains/,
which may be compiled by typing make TestGravC and produce a short summary of their usage when run
without arguments.

9.3 With FORTRAN

In order to make use of the code, you need to insert
INCLUDE ’"FAICON.f’

somewhere at the beginning of your FORTRAN program. Make sure that the compiler finds the file FAICON. £
by including —-I $SFALCON/inc among your compiler options. The usage of the code in your application is
explained in gory detail in the file FA1CON. f. In order to make an executable, add the linker options —L
SFALCONLIB /lib —-1falcON -1lstdc++ —1m so that the library will be loaded at runtime.

For examples of code using falcON. £, see the files TestGravF .F and TestPairF .F in subdirectory
src/mains/, which may be compiled by typing make TestGravF and make TestPairF. Just run
these programs, they are self-explanatory and provide some statistics output. You may also use the input files
given and run them as TestGravF < treeF.inand TestPairF < pairF.in.

10 The N-Body Code gyrfalcON

The package also contains a full N-body code, called “gyrfalcON” (GalaxY simulatoR using £ alcONﬂ
If you want to use this code, you need first to install and invoke the N-body tool box NEMO, version 3.0.13
or higherﬂ see http://www.astro.umd.edu/nemo. It is recommended to configure NEMO with configure
—-—enable-single --enable-1fs. gyrfalcON comes with the usual NEMO help utility: calling
gyrfalcON without arguments or with the argument help=h produces the following overview over the
options.

gyrfalcON —-- a superb N-body code

option summary:

in : input file [2?27?]
out : file for primary output; required, unless resume=t []
tstop : final integration time [default: never] []
step : time between primary outputs; 0 —-> every step [1]
logfile : file for log output [-1]
stopfile : stop simulation as soon as file exists []
logstep : # blocksteps between log outputs [1]
out?2 : file for secondary output stream []
step?2 : time between secondary outputs; 0 —-> every step [0]
theta : tolerance parameter at M=M_tot [0.60]
hgrow : grow fresh tree every 2" hgrow smallest steps [0]
Ncrit : max # bodies in un-split cells [6]
eps : >=0: softening length

< 0: use individual fixed softening lengths [0.05]
kernel : softening kernel of family P_n (P_O=Plummer) [1]
kmax : tau_max = (1/2) “kmax MUST be given [?227?]

3Called “YancNemo” in former versions of this package (before December 2002).
*Older versions of this package contained a non-NEMO code, called “YANC”. This code was never properly tested and has hence
been deprecated.

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo

Nlev
fac
fph
fpa
fea
time
resume

give
give2
Grav
root_center
accname
accpars
accfile
manipname
manippars
manipfile
manippath
manipinit
startout
lastout
VERSION
COMPILED
STATUS

The last column indicates the default value, with ‘[?227?]

time-step levels

tau = fac / acc \
tau = fph / pot | these is non-zero,
tau = fpa * sqrt (pot)/acc | we use the minimum
tau = fea * sqgrt(eps/acc) / tau.

time of input snapshot (default: first)

resume old simulation? that implies:

- read last snapshot from input file

- append primary output to input (unless out given)
list of output specifications.

list of specifications for secondary output
Newton’s constant of gravity (0-> no self-gravity)
if given (3 numbers), forces tree-root centering
name of external acceleration field

parameters of external acceleration field

file required by external acceleration field

name of run-time manipulator

parameters for manipulator

data file required by manipulator

path to search for manipulator

manipulate initial snapshot?

primary output for t=tstart?

primary output for t=tstop?

28-feb-2007 Walter Dehnen

Feb 28 2007, 09:11:29, with gcc-3.3.5

public version

If more than one of

’

mxv]
A

1
]
1
]
]
1
]
]
1
f]
t
t
3.0.91]
]
1

indicating that the value for the keyword must

be given, while ‘[1’ means that the corresponding feature is not used by default. In order to get a detailled
explanation of the various options, see the manpage of gyrfalcON.

Traditionally on linux systems, there is a limit of 2Gb on the size of files. This will cause trouble with NEMO
snapshot files, since the snapshots of all output times are written to one file. To overcome this, you must (i)
configure NEMO| appropriately (use configure —--enable-1fs when installing) and (ii) ensure that your
file systems supports large files — consult your system administrator.

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo

JNVY QD1 PU® 9ZIS 94980 Q9 ‘Z4DL] Yim ¢/ N-WNnuad yyim dojde] € uo uni *p ¢ uors1on 006 yram pafidwos apo),

0T = N 103 doys swny 3sapioys 1ad 93sf, Jnoqe 03 spuodsariod s[duwexs da0qe dy) ur uondwnsuod awmn NdD YL
‘NOOTeIIAb isn[10u ‘sopod Apoq- A7 JO sadA)
[[& I0J onI} Sy, "A1IARIS pajewns? 9y} UL SBIq Y} JO QANBIIPUL ST 0M] I} UIIM)Iq QOUIIJJIP Y ‘SnY], 99138 A9} op ‘(SUIUSIJOS OU) UBIUOIMAN A[IOBXD ST
A)ARIS J1 ATUQ "SsAem JUISPIP 0Mm) Ul Ing ‘A310u9 [enuajod [rUONIBIIARIS 9U) 2INSBOW | pue ") 10q ‘S9210J [BUONBIIALIS [BUISIX JO QOUISQE UI JeY) 9JON
"(JeWLIO} 99S:UTUL UT) QW) PIIB[NWNIOE A} SB [[om Sk ‘dals own [[nJ pue ‘uoneinduwos 9210 ‘Surp[ing 3913 9y} uo juads Spuodas ur duwmn
NdD Y} urejuod suwnjod Inoj Isef oy, ‘Yrdop oom oy pue (10393ur ue sAem[e) SNIPeI 1001 Y} JO €30] 9AIS O pue ¥z T suwn[od Y[, "sdoisyoo[q maJ € urgim
JuoWUSISSe [eNIUL) WoIJ Jsnlpe sroqunu sy} ‘A[rens) "dais swr USAIS oy} IIM 9AOW JBY) SIIPO] JO IOqUUNU A} JAIS SUWN[OD dAY IXou Y], “(uorsroaxd
jurod Suneopy UIYIIM SAOW JOU [[IM SSBW JO 12U 9y} ‘dojs own 9[3uls & Iim SuneIdajul uaym) NOOTEJF JO aImeu SUIAIISUOI-WNUIWOW Y} 0} anp
saSueyo A[pIey Ioye| AU, "UONOW SSBW-JO-IA)UAD JJN[0osqe pue ‘wnjudwow Jensue [ejo} dnjosqe ‘oner [euia ‘g/(*v - rw {) = M pue g/ (*ew)
= W4 AS10ud TrUOnEIIARIS [RUIAUI ‘A3I0Ud dn_uLY ‘(%7000 Aq A[uo pasueys yomym) A3I0Ud [BJO] ‘QWII} UONB[AWIS JY) IAIS SUWN[OD JYSId ISIY Y],

16 90322+ 1T T9°T19 €5°0G 9€°6 0T 0T 8€8CC L8ESLZ 89LL6T GS068T ZS6FTC 80-26°C 60G%L000°0 L9666 0 PE99T 0- 9€99T°0- €VTE80°0 ¥8%12E80 0~ 000°0T
6872012 T 89°T9 6G°0G LE'6 0T OT GS08ZZ GO09GLZ 66GL6C G6006T 968ETZ 80-°€°C LOGPLO00 0 €5666°0 ZE99T 0- PE99T 0- ZZTIEBO'O 80GTZEB0 " 0— 05L8°6
02°10:02+T 0L°T9 29°0G 9€°6 0T OT 8ELZZ 8E9GLZ CESL6T 8ST68T PHE6VIZ 80-20°C 0TSHLO00°0 9766670 T€99T 0~ €€99T°0- ZITEBO'O 02GTZ€80° 0~ 00GL"6
0G°6G:8T+ T 0L"T9 €9°0S PE€E'6 0T 0T 99LCC L¥YSLZ 169L6C Z0Z06T ¥68ETZ 80-20°€ 6TSVL000 0 9¥666°0 T€99T 0- €€99T°0- 0TTEB0°0 8TSTZEGD 0— 0529°6
T0°80:€0:0 L6°6G 68°8% LE°6 0C 0T ¥6IST 689282 800T0E 6%0P8T 090LTZ 60-°L°C SLZKLO00"0 €T00°T 29991 0- €999T°0- 9TFKEB0'0 G09TZEBD 0— 00SLE"O
€0°80:20:0 786G 99°8% 05°6 0T 0T 8ZEET 88€G8Z €8%00€ 6VL88T ¢S0CIZ 60-°L°C €LZPL0O00°0 FHTI00'T €9991°0— $999T°0- 9ZFE€80°0 ¥2912€80°0- 0006Z°0
0Z°80:T0:0 06785 GZ'Ly S¥'6 0 0T 9ZITT 8¥7¥88C 8€666C 0CEE8T 89TLIZ 60-°T°T ZLZFLO00°0 ¥I00°T €999T°0- G999T°0- 0€FEBO'0 0291Z€80°0— 0052T°0
69°60:00:0 69°6 G9°8 G8°0 0Z OT <2268 bZeT6C 78S66C ©9288T 806T1C 0°0 €LZPLO0O0°0 €T00°T €999T°0- $999T°0- ¥ZHEBO'O 8¥STZEBD 0— 0000°0

||| ¢

pajernunooe dejis aeab 9913 q ¥ZT L-.C 79/1 ZE/T 9T/1 8/1 Jud™A | Tl M/LZ~ M Ut A i A+1=3 Eligsat #

#

9,05 ptd #

Wobata, uo 4

WITPM, AQ #

6€:0Z:60 8Z g4 PeM 3B UuNI #

#

WbOT a=2TTFHOT 10 0=udF T0°0=0BF G=AdTN ¢=xeury 10°'0=sde (T=do3ls3y dus-g=3no -=uT NOOTeFILb, #

wmﬁtoM:mMQ:sBaB,OOH.Q“2@@:mwcmA:”Hpozﬁ:u::ﬁ::2&3:??@96H:&:omﬁqﬁﬁaomgcm.m,Ecas&:ocmmﬁmﬁozooﬂmwmwm
boT @=oTT3IboT 10 0=udF T0 0=0eF G=ASTN ¢=XPwy
TI0°0=sde (QI=do3s3 dus- g=3n0 —=UT NOOT®BIJIAD
T=Ado0o T=9Sn —-=3Nn0 —=UT 9ZTIJISWWAS
| 23=ura-b T=poses [=euweb (Q000S=APOqU -—-=23NO usuyspiw

~ = =

spuewrwod ay ansst Aew nok ‘{_[p|‘_|p|junua 100 = £
pue ‘Q/1 = **WL ‘QzT/T = "L ynum sdays own aandepe aAy pue 1) = 2 Jo P3u9] Surudyos [eqo[3 Juisn (1 = py pue ‘T = 54 ‘T = H Adw jey
sjun Juisn) syrun Wy () 10§ I ARISNUL (7) pue ‘UISHO JIm djowwAs Afrenrur axe ey sopnted (07 = N Yy [opow 3SIbuIdH € 93ea1d () 03 19pI0 U]

a|dwex3 uy 10l

11 Additional NEMO-type Programs in £alcON

Note that all NEMO-type programs have a help utility: when calling them without argument or with the option

help=h, a listing of their options is printed. If a name for an I/O file is given as ‘~’, the program will instead

read from stdin or write to stdout, which allows piping into another program. When an output file name

reads ‘.’, it is interpreted as sink, i.e. no output is ever made. If an output file name is appended with a ‘!’ or

2’ any existing file of the same name (without this appendix) is overwritten or appended to, respectively.
Below, we give a short summary of the programs. For more details, see the relevant man page(s).

11.1 Computing Gravity

The program addgravity adds gravitational potential and acceleration to existing snapshot(s). getgravity
computes the gravity generated by one set of particles (source) at the positions of another (usually smaller) set
(sinks). This is useful, for instance, for computing the rotation curves of N-body galaxies.

11.2 Creating Initial Conditions
11.2.1 mkdehnen
This program creates initial conditions from an isotropic spherical |Dehnen| (1993)) model, which has density

2)

R B T
r)= :
A Y (r 4+ 1)t

11.2.2 mkking
This program creates initial conditions from a spherical King model of single-mass stars.

11.2.3 mkplum
This program creates initial conditions from a spherical Plummer model with isotropic velocities.

11.3 Manipulating Snapshots
These programs read a stream of NEMO snapshots, manipulate each of them, and write out another stream of
NEMO, snapshots. Both in and output may be either file or pipe. All of these programs have the following
keywords in common. in and out specify the in and output streams, t imes (defaulting to times=all)
specifies the times of the snapshots to be read, manipulated, and written out.

It is recommended to manipulate snapshots on- and off-line using manipulators (see section [I2).

11.3.1 manipulate
This program (public since May 2005) initiates an off-line analysis via manipulators (see section [12)).

11.3.2 symmetrize
(public since May 2004) This simple program may be used to symmetrize a snapshot with respect to the origin
(x = v = 0, and, possibly, the equator (¢ = 0 plane).

Note that this program is useful for isolated galaxies only.

11.4 Data format conversion
11.4.1 s2aand a2s
These two little programs allow simple conversion from and to ASCII tables.

11.4.2 g2s and s2g
These two programs convert NEMO)| snapshots to and from gadget data files. Different endianess is discovered
and corrected for on the fly.

11.43 s2s
This simple program converts snapshots to snapshots. The user can specify which times and which data are
copied. The current version does not support the possibility to only copy a sub-set of all the bodies.

http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo
http://www.astro.umd.edu/nemo

11.5 Analyzing Snapshots On or Off Line
These programs read in a stream of snapshots, analyze each of them, and write diagnostics output. Optionally,
they also write the snapshots out. This option allows to have several analysis tools piped one after the other
(the user has to take care that each receives the proper type of body data).

It is recommended to analyse snapshots on- and off-line using manipulators (see section [12)).

11.5.1 lagrange radii
(public since May 2004, previously proprietary as ‘lagrange_rad’) Given a set of fractions € (0, 1), the
radii (w.r.t. the origin) containing corresponding fraction of the total mass are computed and written in ASCII
format to a file. In order to center the snapshot, use density_centre before. This program is much faster
than a global sort on the radii.

Note that this program is useful for isolated galaxies only.

Note that the manipulator 1agrange does exactly the same job and is more flexible in that the subset of
bodies which are used can be defined more generally.

12 Run-Time Manipulators

Run-time manipulators have been added in September 2004. They are functions (in fact C++ classes) that

operate on the snapshot data and are called in gyrfalcON (for on-line analysis or manipulation) after every

complete blockstep or in manipulate (for off-line analysis or manipulation) for every snapshot stored in

file. Run-time manipulators are loaded at run-time, according to the keywords manipname, manippars,
manipfile, and manippath, and hence no recompilation of the code is required. Up to 100 Manipulators

can be concatinated, i.e. one called after the other, by using manipname=namel +name2 etc., manippars="parsl ; pars:
etc., and manipfile="filel ; file2 "ﬂ Alternatively, if only a manipfile (but no manipname) is given,

that file is interpreted to contain the name, parameters and filenames of manipulators. Such a file may look like

this:

#

manipulators for simulation

#
namel filel # manipulator namel takes no parameter, but needs file
name?2 0,1,5 # manipulator name2 requires 3 parameters.

#

Lines whose first non-space character is ‘#’ are ignored and anything following a free (i.e. preceeded by
space) ‘#’ is also ignored (can be used to put comments into the file).
The potential use of run-time manipulators is almost unlimited (one may use them for on-line analysis as

well), but currently only four instances are contained in the package.

From July 2006 manipulators can communicate data via a pointer bank supported by class snapshot.
Supopse you want to compute the lagrange radii of a bound (£ < 0) stars (particles with 7 < N,) w.r.t.
the position of their maximum density. While it is possible to write a single manipulator for this job, it is much
more convenient to use three existing manipulators which communicate their data; the input file may look like
this:

#

1 pick subset: all bound with i<10000
set_subset 10000 (i<#0)&& (E<0)

2 find density centre of subset
dens_centre 500

3 compute lagrange radii of subset w.r.t. density centre
lagrange 0.01,0.03,0.05,0.1,0.3,0.5,0.7,0.9,0.95 simul.rad

A detailled doxygen documentation for the manipulators listed below can be found at falcON/dox/html/namespa

®In previous (pre July 2006) versions, the characeter ‘#’ was allowed as a separator of file names or parameters. This is no longer
supported, but instead of the semicolon, you can also use a space. In either case, the whole list of parameters or file names must be
given in quotes.

10

12.1 set_subset
This manipulator creates a filter from a boolean body func expression, see man pages (5bodyfunc), given
inmanipfile, with parameters from manippars (an empty expression makes the open filter: all bodies are
accepted). At each manipulation, bodies not passing the filter are flagged to be ignored, while those passing the
filter will be flagged not to be ignored. This is equivalent to the sequence of manipulators set_filter and
use_filter.

A simple usage is to restrict the range of bodies. For instance the bodyfunc expression "#0<=i&&i<#1”
filters bodies with index between parameters #0 and #1 (note that the the indices of bodies may not be pre-
served; in this case use the key instead, that is "k’ instead of *i’ in the expression).

12.2 set filter

This manipulator creates a filter from a boolean body func expression, see man pages (5bodyfunc), given
inmanipfile, with parameters from manippars (an empty expression makes the open filter: all bodies are
accepted). The (pointer to the) filter is then registered under the key ‘filter’ with the pointer bank.

12.3 use filter
This manipulator uses a filter, registered under the key ‘filter’ to flag bodies not passing the filter to be
ignored.

12.4 dens centre
This manipulator iteratively finds the position of the (global) density maximum of the defined subset (only
bodies not flagged to be ignored, default: all). More specifically, it finds the position . where

T —
=hp3 |12l 3
ph(wc) ; m; |: h ()
has a global maximum. Here, the smoothing kernel is a Ferrers n = 3 sphere: W (r) o< (1 —r%)3 forr < 1
and W = 0 otherwise. The position x. and the corresponding velocity v, are then registered under the keys
‘xcen’ and ‘vcen’, respectively.

12,5 set centre
This manipulator set ‘xcen’ to the position (pg, p1, p2) and ‘vcen’ to (ps, p4, ps). If no parameters are given,
‘xcen’ and ‘vcen’ are deleted, implying using the origin instead for must other manipulators.

12.6 lagrange

This manipulator computes the Lagrange radii at masses given by total mass times the parameters and writes
them to the file. Only bodies in the defined subset (those not flagged to be ignored, default: all) are used. The
centre is taken to be that found under the key ‘xcen’ (default: origin).

12.7 sphereprof

This manipulator estimates the radial profiles of density, velocity, velocity dispersion, axis ratios, and orienta-
tions from spherical binning of all bodies in the defined subset (those not flagged to be ignored, default: all)
w.r.t. position and velocity ‘xcen’ and ‘vcen’ (defaults: origin). This is similar to, but more powerful than,
the NEMO program radprof.

12.8 projprof

This manipulator estimates the projected radial profiles of surface density; mean, rotational, and dispersion of
the line-of-sight velocity; the axis ratio; position and rotation angle for all bodies in the defined subset (those
not flagged to be ignored, default: all) w.r.t. position and velocity ‘xcen’ and ‘vcen’ (defaults: origin).

11

http://www.astro.umd.edu/nemo

12.9 symmetrize pairs

Assuming the initial conditions were forced to be reflection symmetric w.r.t. the origin (using symmetrize),
there is no guarantee that this symmetry will be preserved during a simulation, since truncation errors eventually
break the symmetry. To avoid this, you may want to enforce symmetry by keeping pairs of particles symmetric
w.r.t. the origin. Exactly this is done by symmetrize_pairs for body pairs with the first body being in the
subset (those not flagged to be ignored, default: all).

12.10 randomize azimuth

Suppose you want to suppress any non-axisymmetric perturbations, such as a bar mode or spiral waves.
One way to do this is to randomize the disk bodies’ azimuths every blockstep. Exactly this is done by
randomize_azimuth for bodies in the subset (those not flagged to be ignored, default: all) using a ran-
dom seed given by pg (if pg = 0, a random seed is generated from the current time).

12.11 add plummer

You may add new bodies to the simulation. add_plummer is a very simple manipulator that at each time
step adds one new body, drawn from a Plummer sphere, to the simulation. If you fancy to design similar
manipulators, you are recommended to model them on add_plummer.

13 Bugs and Features

13.1 Test-Particles

falcON does not support the notion of a test particle, i.e. a body with zero mass. Such bodies will never get
any acceleration (that is because the code first computes the force, which is symmetric and hence better suited
for mutual computations, and then divides by the mass to obtain the acceleration). To overcome this, you may
use tiny masses, but note that the forces created by such light bodies will be computed, even if they are tiny,
and contribute to the computational load. Actually, this is exactly what we do in getgravity.

13.2 Bodies at Identical Positions

The code cannot cope with more than Ncrit bodies at an identical position (within floating point accuracy).
Such a situation would result in an infinitely deep tree; the code aborts with an error message. Note then when
this has occured in the pars, it was often because the body positions were faulty, either all zero, nan, or inf.

13.3 Unknown Bugs

A bug that lead £alcON or gyrfalcON to occasionally crash with ‘Segmentation fault’ I have recently
tracked down and debugged (as of 3rd April 2003). However, there may perhaps still to be similar bugs around,
which are not reproducible and hence hard to track down and weed out. Measures have been taken to solve
such problems eventually. If you ever encounter a problem that you think might be a bug and which is not
mentioned in this documentation, please report it to me (walter.dehnen@astro.le.ac.uk). Thanks.

References

Dehnen, W., 1993, MNRAS, 265, 250
Dehnen, W., 2000, ApJ, 536, L39
Dehnen, W., 2001, MNRAS, 324, 273
Dehnen, W., 2002, JCP, 179, 27

12

http://ukads.nottingham.ac.uk/cgi-bin/nph-data_query?bibcode=1993MNRAS.265..250D&db_key=AST&link_type=ARTICLE
http://ukads.nottingham.ac.uk/cgi-bin/nph-data_query?bibcode=2000ApJ...536L..39D&db_key=AST&link_type=ARTICLE
http://ukads.nottingham.ac.uk/cgi-bin/nph-data_query?bibcode=2001MNRAS.324..273D&db_key=AST&link_type=ARTICLE
file:2002JCP...179...27D.pdf

	Guarantee
	Credit
	What is new?
	Installation
	Individual Softening Lengths
	Testing falcON
	Choice of the Softening Kernel and Length
	Choice of the Tolerance Parameter
	Use of falcON as Poisson Solver in Your Code
	With C++
	With C
	With FORTRAN

	The N-Body Code gyrfalcON
	An Example

	Additional NEMO-type Programs in falcON
	Computing Gravity
	Creating Initial Conditions
	mkdehnen
	mkking
	mkplum

	Manipulating Snapshots
	manipulate
	symmetrize

	Data format conversion
	s2a and a2s
	g2s and s2g
	s2s

	Analyzing Snapshots On or Off Line
	lagrange_radii

	Run-Time Manipulators
	set_subset
	set_filter
	use_filter
	dens_centre
	set_centre
	lagrange
	sphereprof
	projprof
	symmetrize_pairs
	randomize_azimuth
	add_plummer

	Bugs and Features
	Test-Particles
	Bodies at Identical Positions
	Unknown Bugs

