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Abstract. N-body simulations of collisionless collapse have offered important clues for the construction of realistic stellar
dynamical models of elliptical galaxies. Understanding this idealized and relatively simple process, by which stellar systems can
reach partially relaxed equilibrium configurations (characterized by isotropic central regions and radially anisotropic envelopes),
is a prerequisite to more ambitious attempts at constructing physically justified models of elliptical galaxies in which the
problem of galaxy formation is set in the generally accepted cosmological context of hierarchical clustering.
In a previous paper we have discussed the dynamical properties of a family of models of partially relaxed stellar systems (the f (ν)

models), designed to incorporate the qualitative properties of the products of collisionless collapse at small and at large radii.
Here we revisit the problem of incomplete violent relaxation, by making a direct comparison between the detailed properties
of such family of models and those of the products of collisionless collapse found in N-body simulations that we have run for
the purpose. Surprisingly, the models thus identified are able to match the simulated density distributions over nine orders of
magnitude and also to provide an excellent fit to the anisotropy profiles and a good representation of the overall structure in
phase space. The end-products of the simulations and the best-fitting models turn out to be characterized by a level of pressure
anisotropy close to the threshold for the onset of the radial-orbit instability. The conservation of Q, a third quantity that is argued
to be approximately conserved in addition to total energy and total number of particles as a basis for the construction of the f (ν)

family, is discussed and tested numerically.

Key words. stellar dynamics – galaxies: evolution – galaxies: formation – galaxies: kinematics and dynamics –
galaxies: structure

1. Introduction

The collapse of a dynamically cold cloud of stars can lead to
the formation of realistic stellar systems, with projected density
profiles well represented by the R1/4 law (van Albada 1982).
The theoretical framework for the mechanism of incomplete
violent relaxation that governs this process of structure forma-
tion was proposed by Lynden-Bell (1967), who argued that fast
fluctuations of the potential during collapse would lead to the
formation of a well-relaxed isotropic core, embedded in a ra-
dially anisotropic, partially relaxed halo. This general picture
served as a physical justification for the construction of the so-
called f∞ models, which indeed recovered the R1/4 law and,
suitably extended to the case of two-component systems (to
account for the coexistence of luminous and dark matter), led
to a number of interesting applications to the observations (see
Bertin & Stiavelli 1984, 1993, and references therein).

An attempt at deriving the relevant distribution function di-
rectly from the statistical mechanics of incomplete violent re-
laxation suggested that, in addition to the f∞ models, one could
consider alternative models, called the f (ν) models (Stiavelli &
Bertin 1987), with similar overall characteristics. The key in-
gredient for the construction of the f (ν) distribution function
is the conjecture that a third quantity Q, in addition to the
total mass M and the total energy Etot, is approximately con-
served during the process of collisionless collapse (of course,
we are referring to systems characterized by vanishing total
angular momentum, Jtot = 0). This quantity is introduced to
model the process of incomplete violent relaxation, ensuring
a radially biased pressure tensor and a 1/r4 density profile
in the outer parts of the system. Because of their relatively
straightforward derivation from the Boltzmann entropy, these
models were revisited recently (Bertin & Trenti 2003) and
used to demonstrate the onset of the gravothermal catastrophe
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(Lynden-Bell & Wood 1968) for such a one-parameter se-
quence (at fixed ν) of anisotropic equilibria; a preliminary in-
spection of the general characteristics of the f (ν) models then
convinced us that, with significant advantage over the f∞ mod-
els, they might also serve as a good framework to interpret the
results of simulations of collisionless collapse not only qualita-
tively, but also in quantitative detail. Therefore, we proceeded
to examine their intrinsic properties systematically (Trenti &
Bertin 2005, hereafter Paper I), and we will take advantage of
that work for the study presented in this paper.

In this article we describe the results of a relatively wide
set of numerical simulations of collisionless collapse, aimed
at studying the phase space evolution and settling of the sys-
tem during violent relaxation, and we then compare in detail
the properties of the quasi-equilibrium end-products thus ob-
tained with those of the f (ν) models. In particular, we discuss
the role played by the initial conditions and find that a cer-
tain degree of clumpiness is required for an efficient mixing in
the single-particle angular momentum distribution; this form
of relaxation turns out to be crucial for a good match with the
f (ν) family of models. The Q conservation is then studied di-
rectly by looking at its time evolution. For a significant range of
collapse factors, as determined by the initial values of the virial
ratio u = (2K/|W |)t=0, an approximate conservation is indeed
observed. The end-products (and thus the best-fitting models)
tend to be characterized by a value of the global anisotropy
parameter close to marginal stability with respect to the radial
orbit instability (Polyachenko & Shukhman 1981).

The paper is organized as follows. After introducing our ba-
sic models and notation (Sect. 2), in Sect. 3 we start by review-
ing the choice of the numerical code and we then check the re-
sults obtained in some test runs against the tree code of Dehnen
(2000). In Sect. 4 we discuss the initial conditions adopted for
the simulations of collisionless collapse, with special attention
to the issue of clumpiness in phase space. In Sect. 5 we charac-
terize the end-products of the simulations in terms of a few key
indicators (i.e., central concentration, global anisotropy, den-
sity and anisotropy profiles, deviations from spherical symme-
try) and describe their dependence on the initial conditions. In
Sect. 6 we examine the hypothesis of the approximate conser-
vation of Q. We then move, in Sect. 7, to the comparison of
the end-products of the simulations with the f (ν) models (in
terms of density and anisotropy profiles and directly in phase
space). In Sect. 8, we draw the main conclusions from this
study. Finally, in the Appendix we provide additional com-
ments on the issue of clumpiness in phase space.

2. f (ν) models, units, and notation

In general, we will keep the same notation as in Paper I. We
recall that the relevant distribution function is obtained by
extremizing the Boltzmann entropy S = − ∫ f log f d3xd3w

at fixed total mass M =
∫

f d3xd3w, total energy Etot =

1/3
∫

Ed3xd3w, and Q =
∫

Jν|E|−3ν/4 f d3xd3w. Here E and
J denote single-star specific energy and angular momentum,
while x and w denote positions and velocities respectively.
This leads to the function f (ν) = A exp [−aE − d(J2/|E|3/2)ν/2],
where a, A, d, and ν are positive constants. The f (ν) models are

then constructed by solving the Poisson equation for the un-
known potential Φ(r) numerically. At a fixed value of ν, one
may think of the free constants as providing two dimensional
scales (for example, M and Etot) and one dimensionless pa-
rameter, such as Ψ ≡ −aΦ(0), the central depth of the dimen-
sionless potential well. By (1; 5) f (ν) model we will denote the
model of the f (ν) family with ν = 1 and Ψ = 5.

The f (ν) models represent equilibrium configurations de-
signed to describe the products of incomplete violent relax-
ation. They are characterized by a density profile ρ(r) falling off
as 1/r4 at large radii and as 1/r2 in the inner part of the system,
outside a central “core”. The size of the core becomes smaller
as the concentration parameterΨ increases. On the large scale,
apart from such freedom in central concentration and core size,
the shape of the density profile is basically independent of the
(ν;Ψ) parameters (see Fig. 3 in Paper I). Interestingly, although
this feature had not been imposed at the beginning (when the
function f (ν) is constructed), the projected density distribution
of the f (ν) models is typically well fitted, on the large scale,
by the R1/4 law; residuals in the fit are reduced if one considers
the generalized R1/n law (with n a free parameter; Sersic 1968),
depending on Ψ (see Figs. 4–5 in Paper I).

In contrast with other approaches (e.g., see Osipkov 1979;
and Merritt 1985) where the anisotropy profile is assigned
a priori, in the f (ν) models the velocity dispersion anisotropy
profile α(r), defined as α(r) = 2 − (〈w2

θ〉 + 〈w2
φ〉)/〈w2

r 〉, must
be computed a posteriori and its shape depends on ν andΨ (see
Fig. 6 in Paper I). The structure of the distribution function only
guarantees that the models match the asymptotic requirements
suggested by the picture of incomplete violent relaxation, i.e.
at large radii, where the pressure is radial, and in the central
regions, where the pressure is isotropic. The global anisotropy,
measured by the quantity 2Kr/KT, i.e. twice the ratio of the ra-
dial to the tangential kinetic energy, depends on the choice of
(ν;Ψ) and correlates with the central concentration (e.g., see
Fig. 7 in Paper I). Models with Ψ � 4 are characterized by an
excessive degree of radial anisotropy (i.e. 2Kr/KT � 1.7), and
are thus unstable.

The physical system of units adopted in this paper is de-
fined by 10 kpc for length, 1011 M� for mass, and 108 yr for
time. In this system, natural for studies on galactic scales, ve-
locities are measured in units of ≈97.8 km s−1 and the value of
the gravitational constant G is 4.4971.

The majority of simulations consists of runs starting from
20 cold clumps of 16 kpc radius in a sphere of 40 kpc radius,
with u = (2K/|W |)t=0 in the range 0.05−0.25. After the col-
lapse the system has a half-mass radius around 8 kpc. The to-
tal mass of the system is 2 × 1011 M�. The dynamical time,
which we define as td = GM5/2/(−2Etot)3/2, is therefore typi-
cally ≈1.2 × 108 yr, i.e. 1.2 in our units. As a result, when we
stop the simulation at time 80, the system has evolved for sev-
eral tens of dynamical times. In any case, we should recall that
the results obtained are scale-free, that is they can be rescaled
to other choices of mass and radius if so desired.
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3. The code

Direct N-body simulations of self-gravitating stellar systems
require huge amounts of computing time because of the
N2 scaling of the code complexity with the number of parti-
cles employed. To model the evolution of collisionless systems,
several algorithms have been developed that treat the gravi-
tational interactions approximately, with a lower complexity.
In principle, to study the process of collisionless collapse we
have two options: either a tree code (e.g., Barnes & Hut 1986)
or a particle-mesh like algorithm (e.g., see van Albada 1982;
McGlynn 1984; Hernquist & Ostriker 1992). Tree codes are
intrinsically slower, scaling as N log N, with respect to particle-
mesh Poisson solvers, for which the complexity is linear in N,
but the latter have the disadvantage of a lower spatial resolu-
tion, being limited by the size of the grid used.

In this paper we are interested in the large scale structure of
the end-products of collisionless collapse, for systems that do
not exhibit large deviations from spherical symmetry. The natu-
ral choice thus appears to be that of a particle-mesh code, based
on a spherical grid and an expansion in spherical harmonics.

The code used in the present study is thus a new version of
the van Albada (1982) code. The relevant changes introduced
are briefly described below, in Sect. 3.1. For completeness, we
have also run (see Sect. 3.2) a number of comparison simula-
tions with the fast code developed by Dehnen (2000).

3.1. An improved particle-mesh code

The key feature of the van Albada (1982) code is the solution
of the Poisson equation ∇2Φ = 4πGρ, which relates the mean
potential Φ of the system to the mass density ρ, by means of
Fourier techniques. Once the potential has been computed by
expanding the density in spherical harmonics, the acceleration
is obtained by numerical differentiation, and the particles are
advanced by a fixed time step, using a leap-frog scheme.

At variance with the original implementation, to preserve
accuracy and to avoid systematic errors, we decided to drop the
angular grid and to treat the angular dependence of the force ex-
actly, in terms of the single-particle Legendre polynomials (for
further details, see Trenti 2005). Basically, this choice changes
the code in the direction of the code of McGlynn (1984) and of
the self-consistent field code of Hernquist & Ostriker (1992).
We preferred to keep the radial grid because of its flexibility
with respect to the density profile, especially under conditions
of rapid evolution (we use a subroutine to generate a grid con-
taining a fixed fraction of the total mass in each shell).

The density is assigned to the radial grid by means of a
cloud-in-cell scheme with a linear kernel, i.e. a particle con-
tributes to the density of the two closest cells with a weight
depending linearly on the distance from the center of the cell
considered. The same kernel is then used to assign the force
from the grid to the particle. The time step is adaptively chosen
in such a way that particles are not allowed to cross more than
one radial cell during one step.

The code has been tested extensively, in terms of its accu-
racy in conserving total energy and total angular momentum
for equilibrium and non-equilibrium initial conditions and in

Fig. 1. Total energy conservation (left) and angular momentum (right)
for a simulated (1; 5) f (ν) equilibrium model with 4 × 105 particles.
The mass of the system is M = 1, the total energy Etot = −1.73, and
the half-mass radius rM = 0.5. The magnitude of the total angular mo-
mentum associated with the initial conditions corresponds to a value of
the dimensionless rotation parameter λ = Jtot|Etot |1/2/(GM5/2) ≈ 10−4.
We recall that time is given in units of 108 years, which, in this case,
corresponds to ≈1.4 td, with td = GM5/2/(−2Etot)3/2.

conserving single-particle energy and angular momentum for
runs of spherically symmetric equilibrium models. The mod-
ified Poisson solver scheme combined with the adaptive grid
ensures a significantly better accuracy than in the original im-
plementation. The typical total energy and total angular mo-
mentum conservation for a run with 105 particles is of the order
of 10−5 per dynamical time in quasi-stationary configurations
(see Fig. 1).

3.2. Comparison with Dehnen’s code

As a further test, we have also run a few test simulations by
comparing, under identical conditions, the performance of our
code to that of the fast tree code GyrFalcON (Dehnen 2000,
2002), within the NEMO distribution (Teuben 1995). In such
tests, we adopt the following procedure. We first generate the
initial conditions in the physical units used by our code (see
Sect. 2) and we run the simulation. We then convert the initial
conditions to the natural units defined by Heggie & Mathieu
(1986) and used in Dehnen’s code. Finally, we run the simu-
lation within the NEMO environment. The quality of the inte-
gration is checked with the standard NEMO tools of analysis.
At the end of the simulation, a “snapshot" of the system is ex-
ported and converted back to our units, in such a way that it
can be processed by the same diagnostics used for the particle-
mesh code.

The initial conditions for these runs have been chosen in
order to be representative of the sample investigated in this pa-
per; they are described in Table 1 (C4.1 and C4.3 entries), with
the properties of the final equilibrium state listed in Table 2.

For the runs with Dehnen’s tree code we adopted the fol-
lowing choice of integration parameters: tolerance parameter
θ = 0.5 (standard choice 0.6) to improve accuracy in the
calculation of forces; softening length ε = 0.01 (in natural
units; standard choice 0.05) to increase central resolution; min-
imum allowed time step 1/28 (i.e. ≈724 steps per dynami-
cal time). With this choice of integration parameters, the en-
ergy and angular momentum conservation is very good: in one
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Table 1. Initial conditions for the simulations. After the simulation
identifier the columns list the number of particles N, the number of
clumps NC, the initial virial ratio u, the initial values of the shape pa-
rameters ε0 and η0, and the initial concentration Cρ0. For the exact
definitions and for the general characteristics of the groups (C1 to C4,
U and S ), see description in Sect. 4.2. Four simulations, marked by a ∗,
have been carried out with GyrFalcOn (Dehnen 2000); two of them
(C4.1∗ and C4.3∗) start from the same initial conditions as for C4.1
and C4.3 respectively, while C4.4∗ and CP5.2∗ are characterized by
small clumps (with radius 2.8 kpc and 6 kpc respectively, distributed
in a sphere of radius 40 kpc).

N NC u ε0 η0 Cρ0

C1.1 105 10 0.275 0.83 0.70 3.0
C1.2 105 10 0.25 0.83 0.70 3.0
C1.3 105 10 0.225 0.83 0.70 3.0
C1.4 105 10 0.20 0.83 0.70 3.0
C1.5 105 10 0.175 0.83 0.70 3.0
C1.6 105 10 0.15 0.83 0.70 3.0
C1.7 105 10 0.125 0.83 0.70 3.0
C1.8 105 10 0.1 0.83 0.70 3.0
C1.9 105 10 0.075 0.83 0.70 3.0
C1.10 105 10 0.05 0.83 0.70 3.0
C2.1 8 × 105 20 0.23 0.93 0.73 2.8
C2.2 8 × 105 20 0.17 0.93 0.73 2.8
C2.3 8 × 105 20 0.12 0.93 0.73 2.8
C2.4 8 × 105 20 0.06 0.93 0.73 2.8
C3.1 8 × 105 20 0.08 0.95 0.91 2.2
C3.2 8 × 105 20 0.18 0.86 0.80 2.6
C3.3 8 × 105 20 0.15 0.84 0.70 3.1
C3.4 8 × 105 20 0.23 0.88 0.73 2.0
C3.5 8 × 105 20 0.15 0.95 0.88 3.7
C3.6 8 × 105 10 0.15 0.86 0.80 3.7
C4.1 105 10 0.15 0.87 0.80 2.8
C4.1∗ 105 10 0.15 0.87 0.80 2.8
C4.1h 105 10 0.15 0.87 0.80 2.8
C4.2 105 20 0.25 0.75 0.63 1.5
C4.3 105 80 0.14 0.90 0.77 1.9
C4.3∗ 105 80 0.14 0.90 0.77 1.9
C4.4∗ 105 80+ 0.15 0.85 0.78 2.0
C4.5 105 400 0.23 0.99 0.95 0.8
C4.5h 105 400 0.23 0.99 0.95 0.8
CV5.1 105 10 0.23 1.00 1.00 1.0
CP5.2∗ 105 40 0.15 0.81 0.78 0.7
U6.1 8 × 105 N/A 0.10 1.00 1.00 1.0
U6.2 8 × 105 N/A 0.19 1.00 1.00 1.0
U6.3 8 × 105 N/A 0.29 1.00 1.00 1.0
U6.4 8 × 105 N/A 0.39 1.00 1.00 1.0
S 4.2 105 N/A 0.25 1.00 0.99 1.5
S 4.3 105 N/A 0.15 1.00 1.00 1.9

dynamical time td, the relative changes are ∆Etot/Etot < 10−5

and ∆Jtot/Jtot < 10−4.
The required CPU time to complete the simulation is

marginally higher than with our code, which, however, has not
yet been optimized for speed.

As desired, for these runs we find a substantial similarity
in the properties of the end-products obtained by the two dif-
ferent methods of integration (see Fig. 2). To be sure, small

Table 2. Final configurations for the simulations of collisionless col-
lapse listed in Table 1. The column entries are described in Sect. 5.
Note that the anisotropy profile in homogeneous simulations can be
non-monotonic; this is indicated by †. All simulations of type C1 and
C2 start from identical initial conditions within each series, except for
a constant scaling of velocities. The quantity ∆Q is referred to ν = 5/8
in simulation CV5.1, to ν = 1 in simulation U6.1 and to ν = 3/4 in
simulation U6.2; this is indicated by #.

∆M ∆Q Cρ κ rα/rM ε η

C1.1 0.00 0.13 570 1.61 1.02 0.91 0.73
C1.2 0.002 0.17 600 1.60 0.94 0.91 0.74
C1.3 0.01 0.20 680 1.59 0.94 0.90 0.76
C1.4 0.01 0.24 790 1.57 0.88 0.95 0.79
C1.5 0.02 0.30 720 1.52 0.88 0.96 0.81
C1.6 0.03 0.38 820 1.50 0.93 0.99 0.80
C1.7 0.04 0.44 760 1.47 0.92 0.97 0.78
C1.8 0.05 0.52 850 1.53 0.87 0.96 0.79
C1.9 0.06 0.66 1130 1.67 0.75 0.97 0.75
C1.10 0.08 0.72 1090 1.74 0.79 0.94 0.69
C2.1 0.01 0.13 110 1.52 1.49 0.87 0.78
C2.2 0.02 0.25 160 1.62 1.24 0.88 0.78
C2.3 0.03 0.4 270 1.70 0.83 0.81 0.69
C2.4 0.07 0.5 520 1.76 0.74 0.81 0.63
C3.1 0.003 0.47 1690 1.99 0.44 0.90 0.73
C3.2 0.001 0.26 1250 1.85 0.55 0.93 0.70
C3.3 0.04 0.57 430 1.60 1.34 0.92 0.71
C3.4 0.02 0.23 500 1.65 1.15 0.93 0.81
C3.5 0.005 0.24 950 1.73 0.57 0.96 0.72
C3.6 0.005 0.27 690 1.79 0.75 0.80 0.77
C4.1 0.005 0.27 440 1.77 0.83 0.80 0.73
C4.1∗ 0.01 0.27 360 1.68 0.97 0.89 0.74
C4.1h 0.00 0.18 240 1.86 0.51 0.86 0.83
C4.2 0.12 0.10 160 1.40 1.65 0.90 0.78
C4.3 0.10 <0.01 70 1.60 1.53 0.84 0.74
C4.3∗ 0.07 0.15 70 1.50 1.56 0.86 077
C4.4∗ 0.04 0.4 4000 1.15 5.30 0.98 0.96
C4.5 0.125 0.02 20 1.20 1.74 0.96 0.95
C4.5h 0.10 0.05 15 1.16 1.58 0.99 0.97
CV5.1 0.12 0.02# 90 1.55 1.50 0.91 0.75
CP5.2∗ 0.10 0.01 590 1.33 2.20 0.83 0.76
U6.1 0.33 0.29# 8 1.10 1.60† 1.00 1.00
U6.2 0.20 0.01# 6 1.10 1.56† 1.00 1.00
U6.3 0.06 0.14 9 1.11 1.50† 1.00 1.00
U6.4 0.00 0.09 8 1.11 1.60† 1.00 1.00
S 4.2 0.00 0.09 506 2.13 0.29 0.99 0.98
S 4.3 0.10 0.26 50 1.50 0.97 0.98 0.98

differences naturally arise, as expected. The main systematic
difference is in the degree of anisotropy characterizing the end-
products of the simulations. In fact, the output from the tree
code is slightly more isotropic: the final global anisotropy, mea-
sured by 2Kr/KT, is up to 7% lower, with a slight outward shift
of the anisotropy profile, corresponding to a more efficient core
relaxation. This might be related to the residual collisionality
present in the tree code.
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Fig. 2. Comparison between our code and GyrFalcON (Dehnen 2000)
for the run C4.1. Final density (upper left) and anisotropy (bottom
left) profiles, and single-particle energy distribution (bottom right) for
a run starting from 105 particles in 10 cold clumps with u = 0.15
(see Tables 1 and 2 for further details about the simulation); here the
solid lines give the results obtained with GyrFalcON, while the crosses
refer to our code. In the upper right panel we plot the differences in
the density profile ∆ρ = 2(ρfalcon − ρpm)/(ρfalcon + ρpm) (crosses) and in
the anisotropy profile ∆α = αfalcon − αpm (solid line).

4. Choice of initial conditions

If the initial conditions are not too artificial, during the pro-
cess of collisionless collapse violent relaxation can take place,
with significant mixing in phase space, and wipe out much
of the details that characterize the initial conditions. In real-
ity, violent relaxation is incomplete. Therefore, the final state
is that of an approximate dynamical equilibrium character-
ized by an anisotropic distribution function, different from
a Maxwellian (which would correspond to thermodynamic
equilibrium). Because of such incomplete relaxation, the end-
products of the simulations do conserve some memory of the
initial state.

4.1. Uniform initial conditions, clumpy initial conditions,
and the cosmological framework

Some of the papers addressing the problem of collisionless col-
lapse start from “uniform" initial conditions in position and ve-
locity space. For example, Aguilar & Merritt (1990) assume
an initial 1/r density profile and then explore the way the col-
lapse proceeds by varying, in addition to the initial virial ra-
tio u = (2K/|W |)t=0, the shape of the initial density profile
(by shrinking the system along one axis) and the amount of
rotation. Udry (1993) starts from uniform cold spheres, and
also varies, in addition to the above-mentioned parameters, the

initial anisotropy content 2Kr/KT. Recently, Boily et al. (2002),
starting from cold uniform spheres or spheroids, focus on
the effects introduced by the number of particles used in the
simulation.

A few earlier investigations (van Albada 1982; McGlynn
1984; May & van Albada 1984; Londrillo et al. 1991) com-
pared “clumpy” to “uniform" (or “homogeneous”) initial con-
ditions, showing that clumpy initial conditions lead to end-
states with projected density distributions well fitted by the
R1/4 law (although Aguilar & Merritt 1990 point out that, for
very small values of u, the R1/4 law is approximately recovered
even for homogeneous initial conditions). (Udry (1993) argues
that starting from a multi-component initial mass spectrum for
the simulation particle distribution can be an alternative way to
represent a clumpy initial density configuration. However, the
introduction of simulation particles so massive as to be repre-
sentative of clumps would introduce effects of dynamical fric-
tion that per se would go beyond the picture of collisionless
violent relaxation.)

Recently Roy & Perez (2004) studied the outcome of vio-
lent collapse starting from an initial uniform background with
the possible addition of small clumps of stars. Although their
clumpy initial conditions are rather different from those con-
sidered in the present paper, they also noted that clumpy simu-
lations lead to steep density profiles with small cores.

As will also be demonstrated later on (see Sect. 5.3), the key
point that distinguishes clumpy from uniform initial conditions
is that, in general, only the former allow significant mixing in
phase space, thus making it possible for violent relaxation to
proceed properly. Thus in this paper we will focus on simula-
tions starting from clumpy configurations. As discussed below,
for the present study we do not require that our initial clumps
be in internal dynamical equilibrium, since their purpose is to
avoid excessive homogeneity in the (E, J2) phase space (see
also Appendix). In particular, the clumps are not intended to
be a realistic representation of possible conditions at a given
epoch in the past. In fact, the effects of violent relaxation be-
come important in a few dynamical times, independently of the
precise epoch when the process is imagined to occur.

To be sure, to identify a realistic set of initial conditions
one should consider a satisfactory cosmological framework.
We plan to do this in future investigations, because this would
lead us well beyond the scope of the present paper. In this
respect, the use of clumps is already one important step for-
ward with respect to the use of homogeneous initial conditions.
Eventually, we should devise a method for determining a “spec-
trum” of clumps with properties compatible with the expecta-
tions of current cosmological scenarios (see also Katz 1991,
and further discussion in the Appendix). For the moment, we
are satisfied with identifying the initial conditions under which
sufficient mixing in phase space is guaranteed. Note that cos-
mologically oriented simulations are centered on the clustering
and growth of dark matter halos, while in this paper, given our
focus on the R1/4 law and on the deviations from it, we have in
mind mostly luminous matter.
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Fig. 3. Typical projected distributions in position (left) and velocity
(right) space for hot (upper panels, run C4.1h) and cold (lower panels,
run C4.1) clumpy initial conditions.

4.2. Setting up clumpy initial conditions

In a clumpy initial state the N particles are grouped in
NC spherical clumps, each of them containing Ni stars, so that
N =

∑NC

i=1 Ni, with 〈Ni〉 = N/NC. Within each clump the star
distribution is homogeneous. The centers of mass of the clumps
are distributed uniformly inside a sphere of radius R, which
defines the size of the system at the beginning of the simu-
lation. The clump radius is RC, with RC < R, but such that
NC × R3

C > R3 (this condition ensures that the sphere of ra-
dius R is well filled by stars). The initial kinetic energy may
be associated with the ordered motion of the center of mass of
each clump (this is our default choice for the simulations of
type C described below; in this case the velocity is assigned
by drawing from an isotropic distribution) or with the random
motions of the stars within the clump (in these cases we add a
subscript h to the simulation label; here the center of mass of
each clump is taken to be at rest). In general, with this choice
of initial conditions the clumps are not in internal dynamical
equilibrium. We note that when the number of clumps used
is low, the initial configuration may deviate significantly from
spherical symmetry (with projected shapes up to those of an E3
galaxy). Formally the limits NC −→ N and NC −→ 1 both lead
to homogeneous initial conditions.

In the case of homogeneous initial conditions (simulations
of type U and S ), which we run for comparison, we employed
two kinds of distribution: (1) a constant density within a sphere
of radius R; (2) a symmetrized version of a given clumpy con-
figuration (simulations of type S ). The symmetrization process
in (2) is performed by accepting the radius and the magnitude
of the velocity of each particle, following the procedure for ini-
tial clumpy conditions, but by redistributing the angular vari-
ables uniformly.

In principle, we have a wide parameter space to explore,
because we have to deal with the initial virial ratio u, the num-
ber and size of the clumps, the cold/hot choice for the initial
kinetic energy distribution (and the intermediate range of pos-
sibilities), the spatial distribution of the centers of mass of the
clumps and of the stars within each clump. As noted earlier
(e.g., see Londrillo et al. 1991), we anticipate that the main
controlling physical parameter is the initial virial ratio.

Table 1 lists for each simulation the following information:
the number N of particles used, the number of clumps NC, the
initial virial ratio u, the initial values of the shape parameters ε0,
η0 (based on the lengths of the axes of the homogeneous ellip-
soid associated with the inertia tensor, taken to be in the order
a ≥ b ≥ c, so that η = c/a and ε = b/a; the inertia ten-
sor is referred to the particles within a sphere of radius 3rM),
and the initial concentration Cρ0 = (ρ(0)/ρ(rM))t=0. As a sum-
mary for the notation used, we note the following. We have
divided the set of clumpy simulations in five subsets, from C1
to C5. The simulations belonging to C1 start with 105 particles
in 10 clumps, the positions of which are fixed. The C2 series
is a high resolution (8 × 105 particles) version of C1, but uses
instead 20 clumps. In the C3 (high resolution, 8 × 105 parti-
cles) and C4 (105 particles) series we use different seeds for
the initial positions of the clumps and we also change other pa-
rameters as described in Table 1. Runs CV5.1 and CP5.2∗ are
test runs specially performed to clarify some issues related to
clumpiness (see Appendix). CV5.1 has clumpy conditions in
velocity space as in run C4.1, but uniform homogeneous con-
ditions in position space; in turn, CP5.2∗ has a clumpy con-
figuration in position space (40 clumps of 6 kpc, with a filling
factor NC × R3

C/R
3 = 0.135) and uniform conditions in veloc-

ity space. Runs U refer to uniform homogeneous spheres (here
the seed for the random numbers is not relevant given the high
symmetry of the configuration) and the S series refers to the
symmetrized runs.

5. The products of collisionless collapse

Table 2 lists for each simulation the following information: the
relative mass loss for the end-products ∆M = (M0 − M)/M0,
the relative conservation of the global quantity Q, with ∆Q =
|Q0 − Q|/Q0 referred to ν = 1/2 unless otherwise noted, the
concentration Cρ = ρ(0)/ρ(rM) of the end-products in terms
of the ratio of the central density to the density at the half-
mass radius, the global anisotropy parameter κ = 2Kr/KT, the
anisotropy radius (defined by the relation α(rα) = 1) relative
to the half-mass radius rα/rM, and the final shape parameters ε
and η. All quantities are referred to the final system of bound
particles.

5.1. General properties

From the results reported in Table 2 we may infer some em-
pirical trends. In particular, here we focus on: (1) central con-
centration; (2) anisotropy content; (3) deviations from spher-
ical symmetry; (4) mass loss. Density and anisotropy profiles
will be discussed and compared with our theoretical models in
Sect. 7.
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Fig. 4. Correlations between final concentration Cρ and initial virial
ratio u (left), and between final ellipticity η and final global anisotropy
2Kr/KT (right). Symbols mark the various sets of simulations as fol-
lows: filled squares for C1, filled triangles for C2, open pentagons for
C3, open squares for C4, crosses for U, and stars for S .

We have run two series of simulations (type C1 and C2)
for which the initial particle positions and velocities are kept
fixed within each series, except for a constant scaling factor in
the velocities able to lead to different values of u (from 0.05
to 0.275 for C1 and from 0.06 to 0.24 for C2). This procedure
thus allows us to explore the role of the initial virial ratio by
keeping all other conditions strictly fixed.

The central concentration resulting from the collapse is ex-
pected to correlate with u. Londrillo et al. (1991) proposed a
simple criterion to set an upper limit to the expected value of
the central concentration by imposing the conservation of the
maximum density in phase space. They argued that, for the col-
lapse of an initially homogeneous system, the central concen-
tration measured in terms of the ratio rM/r0.1 (of the half-mass
radius to the radius of the sphere containing one tenth of the
total mass) should scale as 1/u. Our C1 and C2 simulations fol-
low qualitatively the proposed trend. However, since relaxation
is incomplete, it is natural to find that other factors, in addition
to the value of u, can contribute to determine the properties of
the final states. In fact, if we do not restrict our attention to the
C1 and C2 sequences only and consider instead the entire set
of simulations, we see that the correlation between u and Cρ
becomes weaker (see Fig. 4).

Differently from C1 and C2, the sets of C3 and C4 simu-
lations, starting from different spatial configurations (different
number and size of clumps, different seed in the random num-
ber generator), allow us to study other possible correlations,
in particular those between initial and final concentration and
between final concentration and initial deviations from spher-
ical symmetry; the latter correlation was noted by Boily et al.
(2002), starting from homogeneous spheroids. Again, if we in-
clude the entire set of simulations, the correlations that we find
are, in general, relatively weak.

The final global anisotropy of the simulations (see the quan-
tity κ in Table 2) is also weakly correlated with u, with larger
values of u preferentially associated with lower levels of radial
anisotropy. The series C1 has a systematic, but curiously non-
monotonic trend, while C3 and C4 show that other factors, in
addition to u, are important.

As to the shapes of the products of collisionless collapse,
we note a relatively strong correlation (see Fig. 4) between the

final shape (as measured by η) and the final level of global
anisotropy (as measured by 2Kr/KT). This is likely to be re-
lated to the action of the radial orbit instability during collapse.
In particular, for the C2 series lower values of u lead to more
anisotropic and more flattened end products; the effect in the
C1 series is less pronounced. Of course, the issue of the fi-
nal shapes produced by collapse has been addressed by several
investigations in the past, especially with the hope of establish-
ing whether related dynamical mechanisms can account for the
observed morphologies of elliptical galaxies (for simulations in
the cosmological context, see Warren et al. 1992; see also Udry
1993).

Initial conditions with a small number of clumps, as con-
sidered in our paper, often show significant deviations from
spherical symmetry (from Table 1 we see that η0 can be as low
as 0.7). Curiously, the final value of ηmay even slightly exceed
the value of η0, thus showing that collapse may sometimes push
the system toward spherical symmetry, not necessarily away
from it.

Collisionless collapse can produce significant amounts of
unbound particles and consequently give rise to mass loss. This
effect is particularly severe in the cases where the collapse orig-
inates from a homogeneous sphere (see also Londrillo et al.
1991); here the system may lose up to one third of the mass
(see run U6.1). Clumpiness appears to have a stabilizing ef-
fect with respect to mass loss; in fact, the mass lost is less than
7% even for run C1.1 characterized by u = 0.06. On the other
hand, symmetrized clumpy initial states, of type S , are also
found to evolve with limited mass loss. (Since the nature of the
gravitational forces is mainly radial for both the collapsing ho-
mogeneous spheres (U simulations) and symmetrized clumpy
configurations (S ), the different amounts of mass loss might be
related to the different radial density distributions for the two
types of run. In fact, the effect of superimposing several clumps
of particles creates a density profile decreasing approximately
linearly with radius.)

5.2. The role of the radial orbit instability

Spherical stellar systems with an excess of radial orbits
(2Kr/KT > 1.7±0.25) are expected to be unstable and to evolve
rapidly, on the dynamical time-scale, into ellipsoids; the pre-
cise value for the onset of the radial-orbit instability depends on
the detailed structure of the system considered (Polyachenko &
Shukhman 1981; see Palmer 1993, and references therein). The
radial orbit instability is thought to act efficiently during colli-
sionless collapse and is then argued to be the leading mecha-
nism that makes cold and spherical initial configurations evolve
into generally triaxial configurations (Aguilar & Merritt 1990;
Polyachenko 1992). The instability may also be responsible for
a reduction of the value of the central concentration reached
during collapse (Merritt & Aguilar 1985); in fact, the evolution
of concentrated anisotropic systems into ellipsoids is accompa-
nied by a drastic softening of the density distribution (Stiavelli
& Sparke 1991). As is the case for many other unstable sys-
tems, evolution tends to remove the source of instability and
thus, in our case, to decrease the initial excess of radial orbits.
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Fig. 5. Scatter plot (final vs. initial values) for the single-particle spe-
cific angular momentum. Comparison between a clumpy simulation
(run C4.2; left panel) and its symmetrized version (run S 4.2; right
panel). Units for J are pc2/yr, see Sect. 2.

Therefore, the threshold of instability should provide an upper
limit to the global anisotropy of objects produced by collision-
less collapse.

Our simulations largely confirm the general validity of this
picture and the general applicability of the Polyachenko &
Shukhman (1981) criterion. In particular, simulations C2.3 and
C2.4 are characterized by a value of κ > 1.7 and lead to more
flattened configurations than C2.1 and C2.2. Also the drop in
the central concentration in simulation C1.10 with respect to
C1.9 might be related to the action of the radial-orbit instabil-
ity. Most of the end states are characterized by relatively high
anisotropy (generally κ > 1.5, and values around 1.7 are not
infrequent) and thus it seems that evolution tends to prefer a
state very close to the stability boundary (as studied for the f (ν)

family of models in Paper I by means of an extensive set of
simulations). (An interesting finding is that symmetrized initial
conditions, although artificial, can lead to spherical final states
still able to sustain a large number of radial orbits (κ ≈ 2.1 for
simulation S 4.2)).

5.3. Angular momentum mixing

Simulations with homogeneous initial conditions generate
quasi-equilibrium final configurations that not only suffer from
significant mass loss, but also exhibit unusual features in their
anisotropy profiles (see Sect. 7.3 and Fig. 8).

If the degree of symmetry in the initial conditions is exces-
sive, little room is left for relaxation in the (E, J2) phase space
even if the process itself may be violent and lead to mass shed-
ding. This is confirmed by the fact that little or no mixing is ob-
served in the single-particle angular momentum distribution for
homogeneous simulations, as reported in Fig. 5 (see also May
& van Albada 1984). In fact, if the system evolves remaining
close to spherical symmetry, the conservation of single particle
angular momentum imposes severe constraints on the dynam-
ical properties of the end-state of the collapse. On the other
hand, a certain degree of clumpiness, even if limited to either
position or velocity space, leads to angular momentum mixing.
This is confirmed by two test simulations, CV5.1 and CP5.2∗,
where mixing indeed turns out to be quite efficient and leads
to J relaxation much like in the left panel of Fig. 5 (see also
Appendix).
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Fig. 6. Evolution of the virial ratio during run C4.4, characterized by
the presence of many small cold clumps. The insert box zooms in on
the evolution at the beginning of the simulation, when a first collapse
occurs, followed by an expansion of the clumps while collapsing to-
ward the center of mass of the system. The virial ratio in the final
stages of the simulation is slightly above unity because of mass loss.

Clumps thus help the system reach a “universal” final state
from a variety of initial conditions, which can explain the sim-
ilarity of the density profiles observed in the final products of
collapse simulations (see Sect. 7).

5.4. Dependence on the degree of clumpiness

A few simulations with a large number of clumps (400 in C4.5
and 80 in C4.3) and a spatial filling factor above unity confirm
that, in the limit of large NC, the evolution of the system ap-
proaches that of collapse simulations based on homogeneous
conditions, with end-states characterized by a flat core and a
low anisotropy content. A number of clumps of order 10 to
20 thus seems to be optimal for an efficient violent relaxation.

Even when limited to either position or velocity space,
clumpiness can be important and still lead to end-states with
general properties similar to those of the standard clumpy sim-
ulations considered in this paper (see CV5.1 and CP5.2 entries
in Tables 1–2 and Sect. 7.5).

We also studied the dependence of the results of collision-
less collapse on the spatial filling factor of the clumps. To
do this, we took advantage of the ability of GyrFalcON to
deal with systems with different scales and ran a simulation
(C4.4) initialized with 80 small cold clumps (i.e. with a radius
RC = 2.8 kpc distributed in a sphere of radius 40 kpc). For
this simulation, evolution basically occurs in two stages, with a
first collapse in which strongly bound structures are formed in
a very short time, followed by subsequent merging (see Fig. 6).
Interestingly, the outcome of this simulation is highly isotropic
(α ≈ 0 out to the half-mass radius) and very concentrated. We
will see (Sect. 7.5) that, even in this case, the density profile
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remains very well represented by f (ν) models (and by the R1/4

law). For C4.4, after several tens of dynamical times, there re-
main traces (remnants) of the more strongly bound clumps, or-
biting within the smooth system.

6. Conservation of Q

We recall that the quantity Q (for a discrete system of N par-
ticles Q =

∑
i=1,N(Ji/|Ei|3/4)ν; see also Sect. 2) has been intro-

duced for the description of conditions in which partial violent
relaxation occurs, where it is argued that information about the
initial state is basically lost, except for an approximate conser-
vation of a third quantity (in addition to total energy and total
number of particles). Therefore, it would be wrong to invert
the argument and imagine that, by itself, the conservation of a
quantity such as Q is equivalent to the picture of incomplete
violent relaxation. In particular, we note that, judging from our
set of simulations, Q is well conserved for homogeneous initial
conditions, both in the velocity and position space. However,
this is less relevant to our goals, since homogeneous conditions
do not allow mixing and violent relaxation at the level of an-
gular momentum space to operate properly. Therefore, it is not
surprising to find that the end-products of simulations with ho-
mogeneous initial conditions tend to be less well represented
by the f (ν) models, in spite of their relatively good conserva-
tion of Q.

In this section we will show that the issues involved in
the conjectured conservation of Q and the indications obtained
from our simulations are complex. Therefore, it would be
pointless to continue further in this direction, looking for a bet-
ter definition of what might be defined as “acceptable degree
of conservation" or searching for other quantities that might
be conserved better than Q. Instead, to make a decisive test
about the merits of our approach, we should take the mod-
els that have been constructed (by means of the Ansatz of the
Q-conservation) and compare them in detail with the results
of collisionless collapse obtained from our simulations. Such a
test will be addressed in the following Sect. 7.

6.1. The “observed” conservation

The value of Q, computed with ν = 1/2, is approximately con-
served for a wide range of initial configurations. By approxi-
mate conservation we mean that ∆Q ≤ 0.5, although in some
cases we have conservation as good as ∆Q ≈ 0.01. As a gen-
eral rule, Q is better conserved if the initial virial ratio is not
too low.

A curious property is that all clumpy simulations appear
to lead to the same value of Q, with a scatter on the order of
10% (see Table 3). (I.e. the scatter is less than the mean devia-
tion from exact conservation, around 20−30%.) This result can
be interpreted, at the level of the simulations, by considering
that, independently of the specific details of the initial clumpy
conditions, the large scale structure of the end products of the
simulations is very similar, with respect both to physical scales
(constrained by the conservation of mass and energy in the col-
lapse) and to dimensionless dynamical properties at large radii
(see Sect. 7). In addition, the fact that the values of (M, Etot,Q)

Table 3. Best fit f (ν) models for the set of high resolution runs (series
C2 and C3). The various columns give: run identifier, model identi-
fier, mean value of the absolute relative deviations from the density of
the simulations, mean value of the absolute deviations in the pressure
anisotropy profile, mean value of the absolute relative deviations in
the energy distribution, and final value of Q.

f (ν) 〈|∆ρ/ρ|〉 〈|∆α|〉 〈|∆E/E|〉 Q
C2.1 (1/2; 4.8) 0.11 0.07 0.23 1.24
C2.2 (1/2; 4.8) 0.11 0.06 0.22 1.33
C2.3 (5/8; 5.0) 0.12 0.06 0.21 1.35
C2.4 (7/8, 5.6) 0.14 0.08 0.23 1.33
C3.1 (3/8; 5.6) 0.10 0.22 0.18 1.33
C3.2 (3/8; 5.4) 0.11 0.19 0.22 1.26
C3.3 (1/2; 5.2) 0.17 0.16 0.20 1.64
C3.4 (5/8; 5.4) 0.12 0.05 0.18 1.40
C3.5 (1/2; 6.2) 0.09 0.20 0.15 1.35
C3.6 (3/8; 5.2) 0.13 0.05 0.20 1.35

realized at the end of the simulations are approximately con-
stant is consistent with the fact that the best-fit models do not
exhibit wide variations in the values of Ψ and ν (cf. Table 3
and the discussion of parameter space given by Bertin & Trenti
2003, Sect. 3).

Strict conservation is not meaningful, for a number of
reasons. Indeed, during collisionless collapse even the total
number of particles N and the total energy Etot are not con-
served, if we refer these quantities to the final set of bound
particles; it was noted (Stiavelli & Bertin 1987) that the non-
conservation of Q actually correlates with the non-conservation
of N and Etot. A simple argument also warns us that the conser-
vation of Q should not be meant to apply to all conditions. The
reason is that, if we refer to the proposed definition, Q cannot
be conserved in the limit of an infinitely cold collapse. In fact,
for an infinitely cold collapse (i.e. for u→ 0, with the stars kept
at fixed initial positions), at the beginning of the simulation we
would have Q → 0 (because the single-particle angular mo-
menta vanish, in the limit of vanishing initial velocities, while
the single-particle binding energies remain at a finite value). On
the other hand, at the end of the simulation, the formation of a
quasi-isotropic core with finite kinetic energy content requires
that the final value of Q be finite.

Furthermore, the quantity Q is referred to an ideal case
characterized by spherical symmetry, while, as noted earlier,
both the initial and the final configurations in our simulations
of collisionless collapse can exhibit significant deviations from
spherical symmetry. To get an estimate of changes of Q associ-
ated with deviations from spherical symmetry, we have consid-
ered a (1/2; 3) f (ν) model, unstable against the radial orbit in-
stability (Paper I), and let it evolve; the final quasi-equilibrium
state is characterized by ε ≈ η ≈ 0.73 and is associated with
a change ∆Q = 0.12. Similar changes are observed by stretch-
ing artificially an f (ν) model to a non-spherical geometry, with
ε = 1 and η ≈ 0.7. But these changes are given for comparison
only, since they are not related to conditions in which violent
relaxation takes place.
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Fig. 7. Conservation of the general functional Q̃ (see Eq. (1)) in a
typical simulation (C4.1).

6.2. General polynomial dependence

Although aware of the fact that we should not really look for
quantities conserved exactly during collisionless collapse, we
decided to test the paradigm of Q conservation further by con-
sidering the more general class of Q functionals, defined, for a
system of N points, as:

Q̃ =
N∑

i=1

Jν2i

|Ei| 34 ν1
, (1)

where ν1 and ν2 are free parameters. We explored the parameter
space −1 ≤ ν1 ≤ 1 and −1 ≤ ν2 ≤ 1. The functional Q used to
construct the f (ν) models corresponds to the condition ν = ν1 =
ν2 > 0, which guarantees the desired asymptotic behavior for
the associated density ρ ∼ r−4 at large radii.

We studied the change in the value of this functional com-
puted at the beginning and at the end of a typical simulation
(105 particles in 10 cold clumps, run C4.1; see Fig. 7). If we
focus on the ν1 = ν2 = ν condition, the best conservation would
be attained for low values of ν.

7. Fit with the f (ν) models

We first fit the density and the pressure anisotropy profiles, ρ(r)
and α(r), of the end-products of our simulations by means of
the f (ν) family of models. The phase space properties of the
best-fit model thus identified are then compared with those of
the end-products of the simulations.

Smooth, angle-averaged simulation profiles are obtained
by binning the particles in spherical shells and averaging over
time, based on a total of 20 snapshots taken from t = 64 to
t = 80, at an epoch when the system has already settled down
in a quasi-equilibrium configuration. For the f (ν) models, the
parameter space explored is that of an equally spaced grid in
(ν,Ψ), with a subdivision of 1/8 in ν, from 3/8 to 1, and of
0.2 in Ψ, from 0.2 to 14.0 (corresponding to the grid of models
studied in Paper I). The mass and the half-mass radius of the
models are fixed by the scales set by the simulations.

A minimum-χ2 analysis is then performed, with error bars
estimated from the variance in the time average process used
to obtain the smooth simulation profiles. A critical step in this
fitting procedure is the choice of the relative weights for the
density and the pressure anisotropy profiles. We adopted equal
weights for the two terms, checking a posteriori that their con-
tributions to χ2 are of the same order of magnitude.

7.1. Density profiles

Since the half-mass radius rM and the total mass M are kept
fixed in the fitting procedure, we are left with two degrees of
freedom (i.e., the dimensionless parameters ν and Ψ). In prac-
tice, given the general behavior of the density profile of the
f (ν) models (see Fig. 3 in Paper I), at large radii the freedom
in the fit is limited. Therefore, the excellent match at large
radii to the density profile of the end-products of the simula-
tions demonstrates that the f (ν) family has been constructed
on solid physical grounds. Different values of (ν,Ψ) corre-
spond to different shapes of the inner potential well and of
the anisotropy profile. As exemplified by Figs. 9–11, the den-
sity of the final systems produced by the high resolution set
of simulations (C2 and C3) is well represented by the best-
fit f (ν) profile over the entire radial range, from 0.1 to 10 half
mass radii. The fit is satisfactory not only in the outer parts,
where the density falls by nine orders of magnitude with re-
spect to the central regions, but also in the inner regions. The
mean absolute relative deviation between simulations and mod-
els (〈|∆ρ/ρ|〉 = (1/Ng)

∑Ng

i=1 |ρsim(ri) − ρmodel(ri)|/ρsim(ri)), com-
puted over this extended radial range, is usually around 10%
(see Table 3); here Ng represents the number of radial grid
points.

With a similar procedure, we have studied the end-products
of simulations characterized by different numbers of particles
and clumps (C1 and C4). No significant changes in the quality
of the fits are found if we focus on simulations characterized by
clumpy initial conditions (with the possible exception of those
run with NC ≥ 80).

7.2. Projected density profiles

The end-products of collisionless collapse are known to be
characterized by projected density profiles generally well fitted
by the R1/4 law (de Vaucouleurs 1948), provided that the col-
lapse factor is large (i.e., that the initial virial ratio u is small;
see van Albada 1982; Londrillo et al. 1991). With our set of
simulations we confirm this result and we extend it by means
of the f (ν) models.

The successful comparison between models and simula-
tions is interesting because, depending on the value of u, some
simulations lead to configurations that exhibit deviations from
the R1/4 law. In these cases, the density profile projected along
the line of sight is characterized by an R1/n behavior with n � 4.
For example, the C2.4 simulation, which starts with a low col-
lapse factor, has a best fit index n ≈ 3, while the the simulation
C3.1, which has a large collapse factor, is best represented by
a profile with n ≈ 5. Yet these systems all turn out to be well
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Fig. 8. Density and anisotropy profiles (left frames) and energy density
distribution (right frame) for simulation U6.2, starting from a homo-
geneous sphere. Note that in the vicinity of the half-mass radius the
pressure anisotropy is tangentially biased.

fitted by the f (ν) models. Therefore, the family of models that
we have identified might also be useful for describing system-
atic structural changes in galaxies, in the framework of the pro-
posed weak homology of elliptical galaxies (Bertin et al. 2002).

7.3. Pressure anisotropy profiles

In our simulations the pressure anisotropy profiles follow the
general trend expected for the process of collisionless collapse.
In particular, the final configurations are characterized by an
isotropic core, with α ≈ 0, while the outer regions have a
strongly radially biased anisotropy (up to α = 2). The transi-
tion region (α ≈ 1) is located around the half-mass radius (see
column rα/rM in Table 2). Higher values of 2Kr/KT are associ-
ated with lower values of rα/rM. For clumpy initial conditions
(with the possible exception of those run with NC ≥ 80), the
anisotropy profile α(r) is a monotonic increasing function of
the radius. A curious feature is found for the results of collapse
of uniform spheres (runs U). Here (see Fig. 8) the core is ba-
sically isotropic, with the region around the half-mass radius
exhibiting an excess of tangential orbits (up to α ≈ −0.4). In
the outer parts, but with a very sharp transition, the pressure
profile becomes radially biased. In correspondence to the dip
in α, where α < 0, we note a clear feature in the density profile
(see Fig. 8). Uniform spheres initialized with a very small par-
ticle number (N < 104) do not show this behavior; for them the
pressure anisotropy rises quite regularly, although the profile is
significantly affected by Poisson noise.

In conclusion, for all the clumpy C runs (again, we
should mention, with the possible exception of those runs
with NC ≥ 80), the anisotropy profile is represented ex-
tremely well by our models, with a mean absolute error
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Fig. 9. Comparison between the C3.5 simulation and the best-fit
f (ν) model (1/2; 6.2). The top left panel represents the density as mea-
sured from the simulation (error bars) and the best-fit profile (line).
The top right panel gives the residuals from the fit. At the bottom left,
the anisotropy profile of the simulation (error bars) is compared with
the best-fit profile (line); the bottom right frame illustrates the energy
density distribution N(E). The density ρ and the single-particle energy
E are given in code units.
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Fig. 10. Comparison between the C2.1 simulation and the best-fit
f (ν) model (1/2; 4.8), shown as in Fig. 9.

(〈|∆α|〉 = (1/Ng)
∑Ng

i=1 |αsim(ri) − αmodel(ri)|) typically around
0.1 but often as low as 0.05 (see Table 3).

To some extent, the final anisotropy profiles for clumpy ini-
tial conditions are found to be sensitive to the detailed choice
of initialization. In other words, runs starting from initial con-
ditions with the same parameters, but with a different seed in
the random number generator, give rise to slightly different pro-
files. In any case, the agreement between the simulation and the
model profiles remains very good (see Figs. 9–11).
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Fig. 11. Comparison between the C3.4 simulation and the best-fit
f (ν) model (5/8; 5.4), shown as in Fig. 9.

7.4. Comparison at the level of phase space

At the level of phase space, we have performed two types of
comparison, one involving the energy density distribution N(E)
and the other based on N(E, J2). The chosen normalization fac-
tors are such that:

M =
∫

N(E)dE =
∫

N(E, J2)dEdJ2. (2)

The energy distributions N(E) that we find (see Fig. 9–11),
qualitatively similar to those obtained in earlier investigations
(see Fig. 2 in van Albada 1982 and Fig. 10 in Udry 1993), are
characterized by an approximate exponential behavior at low
energies (N(E) ∝ exp (−aE)) with a rapid cut-off near the ori-
gin, which is argued to go as |E|5/2 because the potential is
Keplerian in the outer parts (Udry 1993; see also the discus-
sion by Jaffe 1987; and by Bertin & Stiavelli 1989). The final
states of the simulations also show the presence of particles
with positive energy, escaped from the system.

In Fig. 9 (bottom right frame) we plot the final energy den-
sity distribution for the simulation run C3.5 with respect to the
predictions of the best-fit model identified from the study of the
density and pressure anisotropy distributions. Similar plots are
given in the following figures for other simulations. The agree-
ment is very good (〈|∆E|〉 ≈ 0.2, see Table 3), especially for
the strongly bound particles. In particular, this means that we
are correctly describing the innermost part of the system. The
energy distribution for less bound particles (i.e. those associ-
ated mostly with the outer parts of the system) is less regular
and sometimes presents a double peak (e.g., see Fig. 10), which
obviously cannot be matched in detail by our models. This is
an interesting example of the way some memory of the initial
state can be preserved (the extra-peak is indeed related to the
initial distribution of binding energies) and a direct sign of the
incompleteness of violent relaxation.

Finally, at the deeper level of N(E, J2), simulations and
models also agree rather well, as illustrated in the four panels
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Fig. 12. Final phase space density N(E, J2) (left column) for the simu-
lation C3.5, compared with that of the best fitting (1/2; 6.2) f (ν) model
(right column).
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Fig. 13. Final phase space density N(E, J2) (left column) for the simu-
lation C2.1, compared with that of the best fitting (1/2; 4.8) f (ν) model
(right column).

of Figs. 12–14. For the cases shown, the distribution contour
lines are in good agreement in the range from Emin to E ≈ −4;
however, the theoretical models show a peak located near the
origin, not present in the simulations, which is related to the
Jacobian factor arising from the transformation of the f (ν) dis-
tribution function from the (x,w) to the (E, J2) space.

7.5. An additional test to characterize clumpy initial
conditions

As an additional test to characterize the detailed effects of
clumpiness, we studied the end-products of the CV5.1 and
CP5.2∗ simulations, by comparing them with the f (ν) models.

Although these two runs start from initial conditions rather
different from our standard choice (cf. C1–C3), being homo-
geneous either in position (CV5.1) or in velocity (CP5.2∗)
space, we note that they can be fitted very well by our family
of models: (3/4; 5.4) for CV5.1 and (1; 6.2) for CP5.2∗ (with
〈|∆ρ/ρ|〉 ≈ 0.1). The good match at the level of the anisotropy
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Fig. 14. Final phase space density N(E, J2) (left column) for the simu-
lation C3.4, compared with that of the best fitting (5/8; 5.4) f (ν) model
(right column).

profile α(r) and of the single-particle energy distribution also
confirms, as discussed in the Appendix, that the requirement of
clumpiness in phase space is a well posed characterization of
the initial conditions. The two runs have the following behavior
with respect to the Q-conservation: ∆Q = 0.02 and final value
Q = 1.40 for CV5.1; ∆Q = 0.01 and final value Q = 1.26
for CP5.2∗.

In passing, we note that the C4.4∗ simulation, character-
ized by very small clumps, leads to a concentrated final density
profile that is well reproduced by the (1; 9.2) f (ν) model (with
〈|∆ρ/ρ|〉 ≈ 0.15).

7.6. Separate fits to density and anisotropy profiles
by means of simple analytic functions

Simple analytic descriptions of density profiles and, separately,
of anisotropy profiles are often used in stellar dynamics, with-
out a specific physical scenario of galaxy formation. For the
density profile we may refer to:

ρ(r) =
(3 − γ)M

4π
r0

rγ(r + r0)4−γ , (3)

where 0 ≤ γ < 3 is a free parameter, and M and r0 are a mass
and length scale respectively (Dehnen 1993). As discussed in
Paper I, it is no surprise to find that the case γ = 2 (Jaffe 1983)
captures the general properties of the density profile obtained
by the simulations at the 20% level. Curiously, when we fit the
density distribution of some simulations by means of Eq. (3),
the best fitting index γ is very low, γ ≈ 0.1 (see Fig. 15).

Similarly, for the anisotropy profile one might resort to the
analytic distribution

α(r) = 2
r2

r2 + r2
α

, (4)

with rα being a free scale (Merritt 1985). As shown in Fig. 15,
the typical shape of the anisotropy profile reached at the end of
the simulations is different.

Fig. 15. Density profile (left), fitted using Eq. (3) with γ = 0.11, and
anisotropy profile (right), fitted with Eq. (4), for the simulation C3.4.
Compare to the fit with the (5/8; 5.4) f (ν) model in Fig. 11.

8. Discussion and conclusions

In this paper we have concentrated on nearly spherical, one-
component stellar systems. As is well known, in spite of these
restrictions, the equations of stellar dynamics allow almost
complete freedom in the construction of self-consistent dynam-
ical models, with the only requirement that they should be sup-
ported by a positive definite (but otherwise arbitrary) function
of E and J, as a distribution function in phase space. Therefore,
the full range of self-consistent one-component spherical stel-
lar dynamical models is enormous. Most likely, the majority of
these models have little to do with the systems that have been
realized in nature. The main idea at the basis of the present
paper is to combine clues from N-body simulations and from
statistical arguments so as to pinpoint, among the enormous
variety of in principle acceptable dynamical models, those few
that, because of their physical justification, have a chance of
matching the properties of interesting classes of numerical sim-
ulations and of observed stellar systems.

Some interesting clues had been noted earlier. With the
aim of summarizing the main properties of incomplete vio-
lent relaxation during collisionless collapse, it was discovered
(Stiavelli & Bertin 1987) that, by arguing that a third quantity
Q (in addition to total energy and number of stars) should be
included among the relevant constraints in the extremization of
the Boltzmann entropy, the most probable and thus physically
justified distribution function f (ν) leads to models that are in
general qualitative correspondence with the products of colli-
sionless collapse found in numerical simulations and with the
observed luminosity profiles of bright elliptical galaxies.

In the present paper we have demonstrated that the f (ν)

models are able to match in surprising quantitative detail the
results of our numerical simulations. At the same time, the f (ν)

models exhibit projected density profiles that are well repre-
sented by the R1/n law (generally with n ≈ 4; the residuals
from the fit are within 0.1 magnitudes in a radial range of from
0.1 to 10 effective radii; see also Paper I). Therefore, we have
demonstrated that the f (ν) models, as well as the end products
of the collapse simulations, are relevant to the description of the
stellar distribution of elliptical galaxies. This correspondence is
even more remarkable if we recall that, from the results estab-
lished in the last decades, dark matter should play a dominant
role in the structure of galaxies, while our approach neglects,
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so far, some important ingredients among which is the presence
of a massive, possibly diffuse dark halo.

Independently of stellar dynamical modeling, our simula-
tions have shown that clumpy initial configurations allow an
efficient re-distribution of the angular momenta of the individ-
ual particles during collapse: such efficient phase space mixing
is precisely the main condition required for a successful appli-
cation of the statistical arguments that lead to the construction
of the f (ν) family of distribution functions. In the past (e.g., see
van Albada 1982; May & van Albada 1984; Merritt & Aguilar
1985; Londrillo et al. 1991) it has been noted that cold col-
lapses, within a wide range of initial density profiles, gener-
ate quasi-equilibrium systems with approximate R1/4 profiles.
Here we confirm that the best match to approximate R1/4 pro-
files is obtained from initiallly clumpy configurations. It thus
appears that collapses starting from artificially uniform and
spherically symmetric initial conditions retain too much mem-
ory of the initial conditions and are unable to evolve into a uni-
versal density distribution. Therefore, it is interesting to find
that precisely those initial conditions that look more plausible
and realistic from the physical point of view lead to end prod-
ucts able to match the stellar distribution of observed systems
in detail. We may then conclude that collisionless collapse from
clumpy initial conditions followed by violent relaxation is in-
deed a formation mechanism relevant to elliptical galaxies.

If we now take the point of view of stellar dynamical mod-
eling and examine the foundation of the f (ν) family of models,
we note that many collapse simulations show Q-conservation
at the 20% level or better (e.g., C1.1, C2.1 and C3.4). But it
is even more surprising to find that the end products can be
fitted so well by the f (ν) models. Such good fits make it clear
that the assumption of Q conservation narrows down the very
wide range of self-consistent dynamical models to precisely
those few systems whose properties match both observed sys-
tems and the end products of collisionless collapse. One must
conclude that the value of the Q-conservation assumption goes
beyond mere “physical plausibility" and “mathematical conve-
nience": it does serve as a sound physical basis for the construc-
tion of dynamical models of partially relaxed stellar systems.

We should emphasize that such detailed quantitative cor-
respondence with observed systems and with the end products
of collisionless collapse comes as a complete surprise, because
the two parameters that can be varied within the f (ν) family of
models (i.e., ν and Ψ) leave very little freedom with respect to
density and anisotropy profiles (see Paper I). Especially note-
worthy are not only the match of the density profile over nine
orders of magnitude but also the excellent agreement of the ve-
locity anisotropy profiles between the f (ν) models and several
end products of collapse from clumpy initial conditions (see
Figs. 9–11 and Table 3).

Yet one cannot claim that the f (ν) models give a fully sat-
isfactory description of the phase space structure of systems
produced via incomplete violent relaxation. In fact, the associ-
ated N(E, J2) distribution is characterized by singular behav-
ior near the origin in the (E, J2) plane, which is not present
in the end-states of the simulations. In spite of this discrep-
ancy between models and end-products of the simulations, the
integrated properties (e.g., N(E), α(r) and ρ(r)) are very well

reproduced. This confirms the fact that a variety of different
distributions in phase space can lead to the same integrated
properties. In this respect it appears that, if we refer to the ex-
treme outer parts of the system (with r � rM, and E → 0) the
previously studied f∞ models (Bertin & Stiavelli 1984), with
their regular distribution function f (E, J2) ≈ |E|3/2 at low val-
ues of |E|, might still have an advantage over the f (ν) models.

Another interesting (although partly known) result of the
present paper is that the velocity distributions of the end prod-
ucts of the collapse simulations and of the best fitting mod-
els possess, in many cases, a rather strong radial anisotropy.
In some of the collapse simulations we see clear signs that
the radial-orbit instability has been active (as indicated by the
correlation between final ellipticity η and anisotropy content
2Kr/KT; cf. Fig. 4), resulting in end products that are close to
the threshold for the onset of the radial-orbit instability. In gen-
eral, systems that are unstable with respect to the radial-orbit
instability should evolve into marginally stable systems (see
also the study of the unstable (1; 3.2) f (ν) model in Paper I). In
view of the good correspondence between the results of the for-
mation processes studied in this paper and important observed
properties of elliptical galaxies, we may argue that ellipticals
are also likely to lie close to the threshold of radial-orbit in-
stability. This would happen if elliptical galaxies, during their
formation process, indeed went through a collisionless phase
characterized by strong radial motions (such as collapse or
head-on mergers). We plan to better quantify this connection by
extending the study to two-component models and collapses,
also starting from a power spectrum of perturbations represen-
tative of cosmological initial conditions.

The last remark brings us naturally to one final comment.
We recall that, since collisionless dynamics is scale-free, the
results obtained here can also be interpreted as relevant to the
description of the collapse of dark matter halos. Clearly, since
we do not include the effects related to the general Hubble ex-
pansion and we do not initialize our clumpy conditions in terms
of the power spectrum of perturbations appropriate for a given
cosmological epoch, a direct comparison between our set of
numerical experiments and the profiles of dark matter halos
obtained in ΛCDM simulations (Navarro et al. 1997; Moore
et al. 1998) would not be justified. Still, our experiments can
be considered as one example of final equilibrium realizations
of a dark halo, when initial conditions are varied outside the
prescriptions consistent with the currently accepted cosmolog-
ical framework (see also Lemson 1995). If we now go back to
our interpretation in terms of the f (ν) models, it is noteworthy
to point out that, although the density profile of the f (ν) models
falls off as 1/r4 at large radii, in the inner parts that might corre-
spond to the regions inside the virial radius (for a definition see
Navarro et al. 1997), the density goes approximately as 1/r3.2

(see Sect. 3.1 in Paper I), which is very close to the reported
1/r3 value for cosmological simulations (Navarro et al. 1997;
Moore et al. 1998). Since the outskirts of dark matter halos
are “still collapsing”, and thus their dynamical conditions are
different from those under which we derived the f (ν) models,
this agreement appears surprisingly good and suggests further
investigations.
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Appendix A: A quantitative measure
of clumpiness

In order to characterize the degree of clumpiness present in the
initial conditions of our simulations, we may consider, in
the 6-dimensional phase space, the ratio cl = 〈ρ(6)

local〉/〈ρ(6)〉 of
the mean local density around particles to the mean density.

We estimate the mean 6-dimensional density in phase space
〈ρ(6)〉 by dividing the number of particles N by the typical to-
tal volume occupied. Since the large-scale structure in phase
space is that of a sphere both in position and velocity space
separately, we compute the total volume as the product of these
two volumes. Each volume is calculated by assuming that the
radius of each sphere is equal to the mean distance between two
randomly chosen particles in the relevant space (position and
velocity respectively); for example, for a homogeneous density
distribution inside a sphere of unit radius, the radius determined
from the adopted procedure would be ≈1.03.

The local density ρ(6)
local (required for calculating the average

used in the definition of cl) is computed by considering one
particle and by counting the number of neighboring particles
Nlocal within a six-dimensional small sphere of fixed radius rs

(and thus by assuming an equally weighted norm in the phase
space for positions and velocities). The scale rs is chosen in
such a way that, on average, a small fixed fraction of the to-
tal number of particles is enclosed. We set this fraction to be
ξ = 〈Nlocal〉/N ≈ 1/250. This choice ensures that we have, on
average, a high filling factor within the small sphere, so that
the effects of biases in the local density estimation arising from
the coincidence of the center of the local sphere with the co-
ordinates of a particle are unimportant (for a discussion on the
construction of unbiased estimators for the local density, see
also Casertano & Hut 1985).

The adopted scale rs also acts as a cut-off scale to the
clumpiness estimator cl, which is obviously insensitive to fluc-
tuations at scales smaller than rs. The dependence of the
clumpiness estimator on ξ is illustrated in Fig. A.1. Eventually,
diagnostic tools such as cl(ξ), as a measure of the initial spec-
trum of inhomogeneities in phase space, will help us establish
a bridge toward initial conditions representative of the cosmo-
logical context (see also comments at the end of Sect. 4.1).

For our homogeneous initial conditions (simulations of
type U) the value of the clumpiness estimator is 0.65 � cl � 1,
depending on the scale considered (cl = 0.72 for ξ = 1/250).
Note that the value of cl can fall below unity, because of bound-
ary effects. In contrast, for the cold clumpy initial conditions of
type C1, C2, and C3 (with 10 and 20 clumps, and spatial filling
factor NC × R3

C/R
3 ≈ 1.25), at ξ = 1/250 cl takes on values

above 30, with typical values around 50 and peaks up to 100.
For simulation C4.4 (with “small" clumps, and spatial filling
factor NC ×R3

C/R
3 = 0.027), cl increases to 300. Conversely, cl

decreases if the number of clumps is increased (down to cl = 15

Fig. A.1. Clumpiness estimator cl as a function of ξ = 〈Nlocal〉/N,
for the initial conditions of simulations C4.1 (10 clumps), C4.3
(80 clumps), and C4.5 (400 clumps). The spatial filling factor is kept
approximately constant (NC × R3

C/R
3 = 1.1−1.3). The arrow indicates

the scale ξ = 1/250 to which we refer most of our estimates.

Fig. A.2. Spatial configuration at time t = 4 (i.e., after a few dynamical
times, in the post-collapse phase) for the simulation CV5.1. Note the
presence of clumps in position space.

for simulation C4.3 with 80 clumps and to cl ≈ 4.5 for simula-
tion C4.5 with 400 clumps).

With the numbers quoted above, we see that, at fixed num-
bers of particles, the clumpiness estimator cl varies with the
number of clumps NC used.
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A.1. Clumpiness and mixing

As already anticipated in Sects. 5.3 and 5.4, for an efficient
angular momentum mixing it is sufficient that clumpiness be
present either in position or in velocity space. In fact, a simula-
tion starting from uniform conditions in terms of positions but
with clumpy structure in velocity space is bound to develop,
after a few dynamical times, a significant clumpiness in posi-
tion space (see Fig. A.2), so that the single-particle angular mo-
menta are well mixed at the end of the simulation (much as in
the left panel of Fig. 5). This result confirms that our choice for
quantifying the clumpiness of a given configuration by looking
at the six-dimensional phase space is indeed reasonable.
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