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Abstract

In this Thesis we study the formation and the evolution of self-gravitating
stellar systems by running N-body simulations with a newly developed particle-
mesh code and interpreting the results in terms of a family of self-consistent
collisionless models, whose dynamical properties are investigated in detail.

We start (Chapter 1) by reviewing the astrophysical framework in which
the study of the properties of elliptical galaxies and, more in general, spheroidal
collisionless stellar systems is currently approached. We focus on the possi-
bility of a statistical mechanic approach and within this context we introduce
(Chapter 2) the family of the f (ν) models (based on the one-star distribution
function f (ν) = A exp {−aE − dJν/|E|3ν/4}), which play a central role in
this Thesis and whose distribution function naturally derives from statistical
mechanics considerations. We also show that the f (ν) family conforms to the
paradigm of the gravothermal catastrophe, which is expected to occur (in the
presence of adequate energy transport) when the models attain sufficiently
high values of central concentration.

In the second part of the Thesis (Chapter 3) we briefly discuss the nu-
merical methods used to simulate self-gravitating N-body systems and we
present the structure and performance of a newly developed particle-grid N-
body code based on the solution of the Poisson equation with a spherical
harmonics expansion. The new code is based on the original code introduced
by van Albada (1982) in his pioneering studies of collisionless collapse. We
then present (Chapter 4) a first application of the code to revisit the radial
orbit instability in collisionless stellar systems, which we argue that could be
linked to a negative thermodynamic temperature of the system.

In the third part (Chapter 5) we present in detail the dynamical prop-
erties of the f (ν) models. We compute a number of intrinsic and projected
quantities for the models needed to compare them with simulations and ob-
servations.

In the fourth part (Chapter 6) we discuss the results from a wide set of
numerical simulations of collisionless collapse. The collapse of a stellar system
starting from cold initial conditions leads, after a few dynamical times (i.e.
≈ 108 years for a typical elliptical galaxy), to an equilibrium state with a
concentrated isotropic core and a low density anisotropic halo that we show
to be represented in quantitative detail by the f (ν) models. The density
profile from the simulations is matched over nine orders of magnitude with a
relative error of 10%; in addition, the fit to the pressure anisotropy profile is
excellent (mean error of 5%) and the models correctly reproduce the phase
space distributions in energy and angular momentum (N(E) and N(E, J 2)).

This study highlights that the f (ν) models with ν = 1/2 are a one param-
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eter (the density contrast between center and half mass radius) equilibrium
sequence, which for stellar systems that have undergone incomplete relax-
ation by violent collapse plays a role similar to that played by the King
models for stellar systems relaxed by collisional effects. To our knowledge,
this is the first time that an analytically simple model constructed from first
principles under physical arguments is matched in detail, with success, to
the results of experiments of galaxy formation performed by N-body simula-
tions.



Chapter 1

Introduction

In spite of the great progress made, many open problems remain in relation to
the structure, the formation, and the evolution of elliptical galaxies. Current
cosmological scenarios (ΛCDM models) propose a coherent explanation for
the formation of structures in the universe, but recent observations of a sig-
nificant number of old elliptical galaxies in the young universe suggest that a
full comprehension of the formation and evolution of elliptical galaxies is still
elusive. From this complex cosmological context we thus isolate in this Thesis
one important evolutionary mechanism, incomplete violent relaxation, which
is known to be the key to explain the quasi universality of the observed surface
brightness profiles of elliptical galaxies. We focus on the processes that are
associated with collisionless collapse. Our primary objective is to compare
the results of simulations of collisionless collapse with a family of theoretical
models, justified by a heuristic derivation, based on statistical mechanics. For
a proper comparison with cosmological simulations, the framework of analysis
presented in this Thesis represent one important step, but should be extended
to include two-components models, so as to describe the evolution of a dy-
namical system in which dark and luminous matter are decoupled from each
other.

1.1 Dynamics of elliptical galaxies

Before we address the specific properties of collisionless models and simu-
lations, we briefly recall some basic phenomenology of elliptical galaxies in
order to motivate the study of the processes of their formation and evolution.
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1.1.1 Universality of the surface brightness profile for

elliptical galaxies

Galaxies are complex systems, where many different components, dark mat-
ter, stars, gas, globular clusters, and black holes interact with one another, so
that, of course, each galaxy when looked at in sufficiently fine detail presents
its own individual characteristics. The large scale structure is however re-
markably similar for all elliptical galaxies.

Almost a century ago, Hubble (1926) proposed a simple morphological
classification for galaxies in terms of their appearance at optical wavelengths.
Investigations carried over the period of several decades have then strength-
ened the conclusion that Hubble’s classification describes a true order among
the galaxies (Sandage & Bedke 1994). In the Hubble morphological classifica-
tion scheme elliptical galaxies are denoted by the symbol En, with n running
from 0 to 7, based on the flattening of the observed image (0 corresponds to
a round object while 7 to an aspect ratio 3 : 1 in the plane of sky).

For elliptical galaxies the classification refers to their projected image.
Their luminosity profile is generally well represented by the R1/4 law (de
Vaucouleurs 1948, 1953):

I(R) = I0 exp
[

−7.67(R/Re)
1/4
]

, (1.1)

where the factor 7.67 guarantees that half of the total luminosity associated
with Re is contained in the disk of radius Re, called the effective radius of
the galaxy. For galaxies characterized by non-circular isophotes R represents
the circularized radius Rc, with Rc =

√
ab, where a and b are the major and

minor semi-axis of the isophotal ellipse. Probably the best example where
such empirical law has been tested is NGC3379, an E1 galaxy approximately
11 Mpc away from us, where the R1/4 law is found to be valid over a range
of more than 11 magnitudes, from R ≈ 0.01Re to R ≈ 7Re (de Vaucouleurs
& Capaccioli 1979; Capaccioli et al. 1990).

To be sure small systematic deviations from the R1/4 are observed, so
that a generalization of this empirical law has been proposed (Sersic 1968):

I(R) = I0 exp
[

−b(m)(R/Re)
1/m
]

, (1.2)

with m being a free parameter and b(m) = 2m − 1/3 + 4/(405m) + O(m−2)
(Ciotti & Bertin 1999). Typically the Sersic index m ranges in the interval
2 . m . 8.

Associated with this photometric (weak) homology of elliptical galaxies
(e.g., see Bertin et al. 2002), it is natural to expect also a structural ho-
mology that goes beyond the mass and light distribution to encompass also
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kinematic properties. To address this point a dynamical model should be
constructed in terms of a distribution function in the six dimensional phase
space. Discussing the properties of a family of self-consistent models suited
to describe the photometric and kinematic properties of elliptical galaxies is
one of the main objectives of this Thesis.

The apparent universality of the observed luminosity profile is a key in-
gredient to be explained by models of formation and evolution of elliptical
galaxies. In particular the model should account for this universality as a
result of an evolutionary process, since it appears highly unlikely that the
R1/4 is just a consequence of fine-tuned initial conditions.

One important physical mechanism acting when collisionless collapse takes
place, so that a system quickly reaches a quasi-equilibrium state starting from
cold initial conditions, is that of violent relaxation (Lynden-Bell 1967). This
mechanism, which will be discussed in Section 1.2.2, can be considered at the
basis of the universality of the R1/4 law, since it has been shown to be a viable
scenario that does not rely on the choice of fine-tuned initial conditions. Sim-
ulations of collisionless collapse usually start from initial conditions for which
the total kinetic energy is much less than the magnitude of the gravitational
energy.

The models that we consider in this Thesis were designed several years
ago (Stiavelli & Bertin 1987) so as to keep into account the physics of violent
relaxation. In this work we show that these models have projected density
profiles consistent with the R1/m that may be used to interpret the weak
homology of elliptical galaxies. In addition, the phase space structure is very
similar to the one measured in the end products of numerical simulations of
collisionless collapse.

1.1.2 Empirical scaling laws

In scenarios where the formation and evolution of galaxies is purely due to
gravitational interactions there would be no preferred values for length or
mass scales. Therefore other physical processes must act during the forma-
tion and the evolution of stellar systems, since we know that specific scaling
relations do exist. With respect to this important point the purely dynamical
arguments presented in this Thesis have little to say.

For spiral galaxies an important scaling law correlates the total luminosity
L with the rotation velocity V :

L ∝ V p, (1.3)

where p assumes values around 4 and is wave-band dependent (Tully & Fisher
1977).
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A similar relation has been proposed for elliptical galaxies (Faber & Jack-
son 1976):

L ∝ σ4, (1.4)

where σ is the central velocity dispersion measured along the line of sight.
At variance with spiral galaxies, where the correlation is tightly established
(5% scatter in velocity at a given luminosity), ellipticals exhibit larger scatter
from the proposed empirical trend. In fact a better relation, known as the
fundamental plane of elliptical galaxies, is available, but includes the role of
a third scale. This is:

Re ∝ σ1.35I−0.84
e , (1.5)

where Re is the effective radius in kiloparsec and Ie is the mean surface
brightness at the effective radius. The precise values of the exponents in
Equation (1.5) depend on the data set and on the details of the fitting
method, and are usually quoted with a scatter, associated to the intrinsic
thickness of the fundamental plane, of the order of 10% (see Dressler et al.
1987; Djorgovski & Davis 1987).

Interestingly, the discovered scaling laws correlate quantities such as the
total luminosity, which depend only on visible matter, with dynamical trac-
ers that are affected by the presence of dark matter. This places strong
constraints on the joint formation and evolution of these two galactic com-
ponents and is often referred to as the conspiracy problem (Bertin 2000,
Chapter 4).

1.1.3 Dark matter and cosmology

The standard cosmological model represents in a satisfactory way the evolu-
tion of the Universe starting from the inflation epoch and is able to predict
several properties of the observed microwave background radiation, which
contains information on the conditions at the epoch of the decoupling be-
tween radiation and matter. Starting from this epoch the matter hierar-
chically aggregates to form the structures observed as galaxies and stellar
clusters at later times, and whose distribution at large scale is successfully
explained by the standard cosmological model (for a review of the framework
see, e.g. Kolb & Turner 1990; Dodelson 2003).

Within this paradigm several efforts are being made to constrain the set
of free parameters on which the model is based. Combined data from Big
Bang Nucleosynthesis, large-scale structure surveys, high redshift Supernovae
and anisotropy of the cosmic microwave background radiation (CMB) give
us a rather consistent convergence toward a model of the Universe which
is flat, Ωtot ≡ ΩM + ΩΛ = 1 (Ωtot = 1.02 ± 0.02) with a matter density
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ΩMh2 = 0.135 ± 0.01, where h is the Hubble constant value in units of
100(km/s)/Mpc, at the 68% confidence level (Spergel et al. 2003; Ruhl et al.
2003); h ≈ 0.71 ± 0.06 (Mould et al. 2000; see also Koopmans et al. 2003).

In this picture the baryonic mass, i.e. the luminous matter observed in
galaxies and the x-ray emitting gas of the intra-cluster medium, represents
only a few percent of the total mass of the Universe. The models presented
in this Thesis may thus seem to be aimed at describing only a minority
component. Indeed, even without a generalization to two-components, we
have proved that they may be effective, in spite of all the limitations, for
the interpretation of observations of elliptical galaxies (see Sect. 5.5). In
addition, the statistical mechanics arguments from which the models derive
may be applied, with little modification, also to an approximate description
of the formation of dark halos in the standard cosmological model. Thus our
dynamical models could be considered under a different point of view and be
used to describe some properties of the dark matter halos (more comments
on this point in the concluding discussion, Chapter 7). The origin of the
success of one-component models may well be due to a strong link between
the properties of dark and luminous matter, as highlighted by the existence
of scaling laws such as the Fundamental Plane for elliptical galaxies (see
above).

The dynamics of galaxies, and in particular the rotation curves of spiral
galaxies, present the most convincing evidence for the presence of halos of
dark material. But these dark halos are not significant from the cosmological
point of view, unless they extended out to rhalo ≈ 2.5h−1Mpc, a factor 30
greater than what can be estimated with the presently available data. Fur-
thermore, some elliptical galaxies present a velocity dispersion along the line
of sight steady declining with the radius, suggesting that dark halos are not
always massive (Bertin et al. 1994; Romanowsky et al. 2003).

The bulk of dark matter is argued to be non-baryonic (White et al. 1993)
and two major categories of elementary particles have been proposed as can-
didates to fill this role: HDM (Hot Dark Matter) and CDM (Cold Dark
Matter). The classification depends on whether at the decoupling the mat-
ter is still relativistic (HDM ), or has already cooled down to a non relativistic
regime (CDM ). The term ΛCDM models refers to models relying on the ex-
istence of large amounts of Cold Dark Matter with a cosmological constant
Λ 6= 0. Currently the HDM scenario seems to be ruled out (Lopez et al.
1999) and the CDM scenario is the preferred choice. Candidates for CDM
matter are WIMPs (Weakly Interacting Massive Particles), such as the neu-
tralino (Griest 1988). Several efforts are being made to detect experimentally
WIMP candidates, but at the moment with no success.

Finally, we would also like to mention that a radically new and non-
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standard solution to the problem of dark matter on the scales of galaxies
has been proposed by arguing that the law of gravity changes at low accel-
erations, the so called Modified Newtonian Dynamics or MOND (Milgrom
1983; Sanders & McGaugh 2002; Milgrom & Sanders 2003). So far, this
approach proves to be successful in explaining phenomena on the scales of
galaxies, although it exhibits some non trivial conceptual difficulties (e.g. in
relation to the problem of relaxation, see Ciotti & Binney 2004). Recently a
relativistic formulation of MOND has been developed (Bekenstein 2004) and
applications to cosmological models are being considered (Hao & Akhoury
2005).

1.2 Structure formation in the cosmological

scenario

1.2.1 Violent Relaxation

One important mechanism relevant to the formation of elliptical galaxies is
that of violent relaxation (Lynden-Bell 1967). For large stellar systems (such
as galaxies) the star-star relaxation time is many orders of magnitude greater
than the actual age of the Universe. Nevertheless, if the potential of a stellar
system varies rapidly with time, as is expected during collisionless collapse,
the system can experience, over a dynamical time scale, a form of relaxation
toward an equilibrium state by means of phenomena that may be related to
phase mixing (Lynden-Bell 1967). Such relaxation operates at the level of the
coarse-grained distribution function even though the system is collisionless
(and thus the evolution of the system in the six dimensional position-velocity
phase space (~x, ~w) can be described in terms of the Boltzmann-Liouville
equation Df/Dt = 0).

Lynden-Bell (1967) notes that, in general, violent relaxation should be
incomplete, because the outer parts of stellar systems formed via collision-
less collapse have longer dynamical times than those characteristic of the
core; the efficiency of mixing becomes insignificant as soon as the central
part reaches a quasi-equilibrium state. Indeed, the numerical experiments of
van Albada (1982) confirmed the picture that the outer parts of a violently
collapsed system is far from thermodynamical equilibrium. In this Thesis we
study in quantitative detail the properties of the end products of numerical
experiments similar to those carried out by van Albada (1982) (see Chap-
ter 6). Here we recall that qualitatively these properties and concepts are
also applicable to dark matter halos in cosmological simulations of structure
formation (see below).
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1.2.2 Collisionless collapse simulations of galaxy for-

mation

Let us, for a moment, consider a simple framework and suppose that ellipti-
cal galaxies are the end product of a short, violent collapse of a cloud of stars
initially grouped in cold clumps (i.e. with an initial kinetic energy negligible
with respect to the potential energy of the system; see van Albada 1982).
The collapse leads to the formation of an isotropic, well relaxed core, em-
bedded in a radially anisotropic, partially relaxed envelope. The process of
violent relaxation is indeed found, in numerical simulations, to lead to end-
products in which the details of the adopted initial conditions are basically
wiped out. Surprisingly, the simulations of van Albada (1982) have shown
that the process produces objects that are well fitted by the R1/4 law; these
results have been confirmed by later studies performed with higher numerical
resolution (e.g., Londrillo et al. 1991).

On the other hand, observations tell us that: (1) elliptical galaxies are
generally found in clusters rather than in the field, and (2) they are char-
acterized by significant metallicity gradients. The idealized isolated collapse
framework explored by the above mentioned simulations of collisionless col-
lapse should thus be put in a more realistic framework. In particular, it is
clear that dissipative processes should also contribute, to some extent, to the
formation and evolution of elliptical galaxies.

The study of an isolated collapsing system, although lacking important
aspects that are relevant to the cosmological scenario, has the advantage of
allowing us to clarify some important physical mechanisms involved in the
formation process, which would otherwise be confused with a number of other
factors and effects present in the cosmological simulations briefly described
below.

1.2.3 Ab initio cosmological simulations

Typically a cosmological simulation starts from a primordial spectrum of
perturbations in the density of dark matter. The simulation then follows
the evolution of the dark matter distribution in a fully relativistic treatment
from the redshift of decoupling between radiation and matter (z ≈ 1100) to
z = 0. The free parameters in the simulation can be tuned on the basis of the
available empirical constraints (such as those provided by measurements of
the anisotropy of CMB; see the results of Boomerang, Ruhl et al. 2003, and
WMAP, Spergel et al. 2003). The key parameters are Ωtot, the cosmological
and Hubble constants and the matter content of the Universe (for a detailed
discussion see Jungman et al. 1996, and references therein); but there are
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many other parameters that are to be specified.
Smaller portions of some simulations can then be re-simulated at higher

resolution. This is obtained by re-sampling the initial perturbations in a de-
sired volume of the simulation and by imposing the boundary conditions at
the edges of the re-simulated box according to the results already obtained at
lower resolution. In this way, the simulations can probe the scale of clusters
of galaxies and even of individual galaxies. However, the structures obtained
are those of dark matter halos, and thus are not directly comparable with
the observations. In order to compare the results with the observations, the
cosmological simulations are often supplemented with some kind of empir-
ical or semi-analytical recipe to include important factors such as the star
formation history.

An important result of cosmological simulations is the fact that the ob-
tained dark matter density profiles appear to be consistent with a universal
profile (Navarro et al. 1996). The dark matter density profiles in ΛCDM
simulations peaks as a power law (ρ(r) ≈ rn) in the centre of the halos (the
precise value of the exponent is still controversial, with quoted values around
n = −1; see Ghigna et al. 2000), while in the outer parts the density profile
is quoted to decline as approximatively r−3. Navarro et al. (1996) proposed
the following simple law to describe this density profile:

ρ(r) =
ρs

r/rs(1 + r/rs)2
, (1.6)

where ρs and rs are scales for density and radius, respectively.
A simple universal description seems thus to be viable both for the surface

brightness profile of elliptical galaxies (the R1/4 law) as well as for the dark
matter halos density (the NFW profile, Eq. 1.6). However, these descrip-
tions do not carry information on why universal profiles exist and on why
they assume these particular expressions. In the Thesis we try to answer
these questions for the case of elliptical galaxies. In addition, we note that
our models (derived from first principles) also present a universal density
profile which is not too different from the NFW formula (see Sect. 5.3.1 and
Chapter 7). This similarity is indeed very promising and further investiga-
tions are planned.

1.2.4 Cosmological simulations and the large scale struc-
ture of the Universe

ΛCDM cosmological simulations, starting from the concordance cosmology
framework with the parameters discussed in Section 1.1.3, reproduce the sta-
tistical properties of the large scale structure of the Universe as observed in
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a number of important galaxy redshift surveys (e.g., the 2dF Galaxy Redshift
Survey, Percival et al. 2001, and the SDSS, Sloan Digital Sky Survey, Schnei-
der et al. 2003). In these surveys the positions and the distances of hundred
thousands (2dF ) or millions of galaxies (SDSS ) are measured in order to
construct a three dimensional map of portions of the nearby universe. From
these maps the power spectrum of the observed density perturbations can be
calculated and compared with the theoretical expectations from numerical
simulations of structure formation. The level of agreement is excellent (Per-
cival et al. 2001), although we recall that in general a survey measures the
distribution of baryonic luminous matter, while the numerical simulations
are dominated by dark matter particles. The explicit assumption that the
luminous particles can be used to trace the underlying distribution of mass
is thus required.

To be sure, the comparison of ΛCDM simulations with the observations
still presents some puzzling points. A better fit to the rotation curves of
dwarf spiral galaxies is given by dark matter profiles shallower than those
predicted by ΛCDM (e.g., see Simon et al. 2003). In addition Binney &
Evans (2001) show that microlensing and rotation curve data for our galaxy
also rule out a cuspy dark matter profile. The solution may lie in the existence
of an effective evolutionary mechanism that disrupts cuspy profiles. From the
dynamical point of view one very interesting possibility is associated with the
dynamical friction effects that small satellites induce on the central density
profile of a galaxy or dark matter halo (Bertin & Trenti 2003; Ma & Boylan-
Kolchin 2004). The topic of small satellites brings us naturally to one other
fundamental problem of cosmological simulations, i.e., the missing satellites
problem. For the local group ΛCDM predicts a number of subhalos that
is approximately two orders of magnitude greater than the total number of
satellite galaxies observed (Klypin et al. 1999). No convincing solutions to
this problem have been presented so far (for an overview of the solutions
proposed see e.g., Kazantzidis et al. 2004).

This gives us additional reasons to concentrate the efforts of the Thesis
on understanding first the simplified one-component framework of galaxy
formation via collisionless collapse, where the physical process that are in
act can be kept under better control.

1.2.5 Evolution with redshift of elliptical galaxies

Massive spheroidal galaxies (M & 1011M�) hosts more than half of the stars
in the local universe. In the ΛCDM framework these galaxies are formed as
the final products of the hierarchical merging processes and thus should have
appeared in significant numbers only recently. However recent high redshift
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observations (Treu et al. 1998, 2005; Cimatti et al. 2004) have highlighted
the discovery of a significant number of massive spheroids at redshift z & 1.5,
where the universe had only one quarter of its present age. From the sample
of galaxies observed in the K20 survey (Fontana et al. 2004) this would imply
that old galaxies at redshift z > 1.5 account for approximately 20% of the
whole galaxy population, a ratio that constitutes a challenge to the current
cosmological framework (Cimatti et al. 2004). In addition, the data from
Treu et al. (2005) show evidence that less massive spheroidal galaxies have
also younger stellar ages in contradiction with the expectations from the
hierarchical assembly models for galaxies. The recent availability of data at
even higher redshift, such as those from the Hubble Ultra Deep Field project,
will allow us to probe the formation of structures out to z ≈ 6 (Bunker et al.
2004; Stiavelli et al. 2004). The data probe in fact the tail of the re-ionization
epoch and the star formation history of the Universe by detecting the faint
end of the galaxy luminosity function, and tracking the origin, structure, and
merger history of galaxies.

Treu et al. (2005) suggest that the observations could be reconciled with
the paradigm of hierarchical merging by introducing a more detailed treat-
ment of the physics that regulates the star formation in a collapsing system.
In the simplified model for collisionless collapse that we consider in our The-
sis star formation is assumed to happen mainly before the collapse and the
process of formation of spheroids is imagined to take a few hundreds million
years, independently of the redshift.

1.3 Statistical mechanics of self-gravitating sys-

tems

1.3.1 Statistical mechanics of violent relaxation

Predicting the final equilibrium state of a system undergoing collisionless
collapse is a basic problem still open. Progress in this direction will help
us to understand the origin of the universality of the surface brightness of
elliptical galaxies; hopefully, it may also give us clues to the origin of the
cusps of dark matter halos found in cosmological simulations and the reasons
behind their universal shape.

To select physically motivated distribution functions among the infinite
variety, which is in principle available for the description of collisionless stellar
systems, one may try to resort to statistical mechanics arguments. A first at-
tempt in this direction was carried out by Lynden-Bell (1967), who proposed
a statistical theory to construct the distribution function of a collisionless
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system that experiences violent fluctuations of the gravitational potential
before reaching equilibrium. The system relaxes in a collisionless way and
settles down in a quasi-equilibrium configuration on a dynamical time-scale.
No mass segregation should result from the process of violent collapse, since
the chaotic changes of the collective gravitational fields involve masses that
are much greater than any individual stellar mass. Thus the properties of
the equilibrium distribution function are expected to be independent of the
stellar masses.

Lynden-Bell’s theory is based on the continuum limit (i.e. N → ∞) for
a system of N stars and leads to curious findings, in particular the exis-
tence of an exclusion principle of dynamical origin, so that the distribution
function for a violent relaxed system formally resembles the Fermi-Dirac dis-
tribution, even though the particles are distinguishable. In the limit relevant
to realistic stellar systems, the distribution becomes a Maxwell-Boltzmann
distribution, but with stars of different masses sharing a common velocity
dispersion (f ∝ exp {−βE}, with E = w2/2 + Φ(r) being the single particle
energy per unit mass). At a fundamental level the theory encounters theoret-
ical obstacles, one of them being related to mass segragation (the “velocity
dispersion problem”, see Lynden-Bell 1967 Appendix I; see also Nakamura
2000).

A different approach to the problem is to recognize that for a better
description of galaxies the finite number of stars that populate the phase
space plays an important role, so that the theoretical problems in the Lynden-
Bell formulation may be related to the continuum limit (Shu 1978, 1987). The
analysis based on such discrete approach highlights that the degeneration
resulting from the dynamical exclusion principle may be of little physical
interest, since it would be important only when two-body encounters becomes
no longer negligible, breaking the collisionless assumption. Shu (1978) argued
that mass segregation can be avoided if initial conditions are well mixed, since
the collisionless evolution of the system conserves the mass composition of
the macrocells in which the system can be divided.

An alternative formulation of violent relaxation has been derived in the
framework of information theory (Nakamura 2000). In this context, a com-
mon velocity dispersion distribution function is naturally obtained, so that
no mass segregation is expected. This is done by assuming a discretization
of the phase space in terms of equal mass elements rather than in terms of
equal volume hypercubes, as considered by Lynden-Bell.

Different numerical experiments have been proposed to test the theory of
violent relaxation, starting from the one dimensional simulations by Cuper-
man et al. (1971) until the recent simulations by Merrall & Henriksen (2003)
and by Arad & Johansson (2005). In the latter study the authors try, in
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particular, to measure the phase space density reached in the central regions
of a clumpy system (made of four cold clumps arranged in a symmetric tetra-
hedron) that has undergone violent relaxation. The equilibrium phase-space
density is compared with the expectations both from the Lynden-Bell (1967)
and Nakamura (2000) theory and it is claimed that both formulations do not
provide a good description for the measured phase space structure, so that
it seems that both theories are “fundamentally wrong” (Arad & Johansson
2005).

This may reflect that effectively violent relaxation is still lacking impor-
tant theoretical arguments. This would not be surprising, since it is known
that the application of statistical mechanics to self-gravitating systems pre-
sents subtle points. In fact, at the fundamental level of the definition of the
entropy it is not clear whether the concept is compatible with gravity due
to the fact that the long range nature of gravitational interaction leads to a
lack of additivity for self-gravitating systems (e.g., see Tremaine et al. 1986;
Stiavelli & Bertin 1987). Thus recent investigations have explored the possi-
bility of setting the discussion in the context of non-standard non-extensive
entropies (e.g., the Tsallis entropies; see the study of the gravothermal prop-
erties of polytropic spheres by Chavanis 2002 and Taruya & Sakagami 2002).

The solution to the discrepancy between theory and experiments may
however lie also in the well known incompleteness of the relaxation pro-
cess (e.g., see Lynden-Bell 1967). Since the fluctuations in the gravitational
potential are rapidly damped as the system proceeds to the new equilib-
rium state, this will not necessarily be the most probable state. A strong
evidence to support this argument is given by the well known result that
violent relaxation is in reality complete only at the centre of the system,
where the dynamical time-scale is shorter, while the outer parts, that are
“still collapsing” when the potential stops fluctuating, are frozen in a quasi
equilibrium configuration characterised by the predominance of radial orbits.
This important point will be discussed below. The introduction of empirical
constraints to describe the incompleteness of violent relaxation will lead to
the construction of the f (ν) models (Stiavelli & Bertin 1987).

In this Thesis we do not address the fundamental issues on the statistical
mechanics of self-gravitating systems mentioned above. We rather take a
more empirical approach and demonstrate that, in the context of incomplete
violent relaxation, the f (ν) models, constructed on the basis of statistical
mechanics arguments, a posteriori describe accurately the properties of both
observed elliptical galaxies and N-body experiments of violent collapse. The
success of the f (ν) models thus makes questions on the precise validity of the
arguments assumed during their construction less relevant.
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1.3.2 Self-consistent models for incomplete violent re-

laxation

The arguments given above highlight the need for an effective statistical
mechanics theory that takes into account the incompleteness of violent re-
laxation. In this respect, the idea of applying empirical additional constraints
during the entropy extremization leads to interesting results for the construc-
tion of distribution functions suited to describe the end products of violently
relaxed systems (Stiavelli & Bertin 1987). The authors pursued two different
routes: one is based on the assumption that a third quantity Q is conserved
during incomplete violent relaxation in addition to the total mass and energy
of the system. This route leads to the f (ν) models, that at the time of the
discovery were left aside and not studied in detail until the present Thesis
work. The ideas behind the conservation of this third quantity are discussed
in the next Chapter. Here we briefly focus instead on the alternative route
proposed by Stiavelli & Bertin (1987), which leads to the f∞ family (Bertin
& Stiavelli 1984).

Stiavelli & Bertin (1987) started with the idea that the partition of phase
space to be used is the one specified by the single particle energy E and
angular momentum J2, which they show to be equivalent to the use of a non
uniform a priori probability in the ordinary position-velocity (~x, ~w) phase
space partition. This probability distribution is shown to be proportional
to the frequency 1/Tr of radial orbits with given energy and angular mo-
mentum. In addition, the authors impose the detailed conservation of the
angular momentum distribution N(J2) for those particles that are in regions
where violent relaxation is expected to be less effective because the collapse
time is shorter than the local dynamical time. With this assumption, and
considering Tr(E, J2) ≈ |E|−3/2 at large radii (where the potential is almost
Keplerian), the f∞ distribution function is recovered:

f∞(E, J2) = A(−E)3/2 exp {−aE − cJ2/2}. (1.7)

Interestingly, the factor exp {−cJ2/2}, obtained by Stiavelli & Bertin (1987)
as a consequence of the detailed conservation of the angular momentum at
large radii, was introduced by Lynden-Bell (1967) as an attempt to model
the incompleteness of violent relaxation. The factor |E|3/2 derives instead
from the assumed uniform partition in the (E, J2) phase space.

The f∞ models have been successfully applied to the description of ob-
served elliptical galaxies, also extended to a two component formulation
(Bertin et al. 1992) to allow for the presence of a dark matter halo. Yet,
when compared in detail to the end-products of typical simulations of vi-
olent collapse, these models are not fully satisfactory because they are too
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isotropic. Thus the idea of comparing in quantitative detail the end-products
of numerical simulations of collisionless collapse with a family of theoretical
models was left aside.

In this Thesis, noting that the f (ν) models appear more promising as a
tool to interpret the results of collisionless collapse, we thus explore a de-
tailed comparison up to the phase space level between the f (ν) models and
numerical simulations of collisionless collapse that we have run with a newly
developed particle-grid code. We show that the f (ν) models with ν = 1/2 are
able to provide a realistic description of the properties of observed elliptical
galaxies (see Chapter 5) as well as of the end-products of collisionless collapse
(see Chapter 6). The f (1/2) models can thus be considered the distribution
function that describes the final equilibrium state of incomplete violent relax-
ation, much like the King models describe the end-products of collisionally
relaxed truncated stellar systems.



Chapter 2

Thermodynamic description of
partially relaxed stellar systems

In this Chapter we introduce the distribution function of the f (ν) models,
derived earlier (Stiavelli & Bertin 1987) from statistical mechanics consid-
erations and well suited to describe partially relaxed stellar systems. Here
we focus on the thermodynamic properties of these models, while the detailed
study of their dynamical properties and the comparison with the products of
numerical simulations of collisionless collapse will be discussed in Chapters
5 and 6. This Chapter is mainly based on the results published in Bertin &
Trenti (2003) Ap.J. 584, 729.

2.1 The gravothermal catastrophe framework

The possibility of providing a thermodynamical description of self-gravitating
stellar systems1 has motivated a number of investigations in galactic dynam-
ics, starting with the pioneering work of Antonov and Lynden-Bell in the
60s. After the realization that violent relaxation is likely to lead to par-
tially relaxed configurations in dynamical equilibrium (Lynden-Bell 1967), a
re-examination of the problem of the isothermal sphere, studied earlier by
Bonnor (1956) for a self-gravitating gas, led to the interesting possibility
that stellar systems may undergo the process of gravothermal catastrophe
(Lynden-Bell & Wood 1968; see also Antonov 1962).

A self gravitating system may develop an instability due to its negative
heat capacity. In fact, if a gravitational system loses energy, the net effect is
that, due to the virial theorem, the kinetic energy grows, while the system

1In this Thesis the words “stellar system” are meant to indicate a group of N point
particles interacting gravitationally.
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shrinks to find a new equilibrium state with a more negative potential energy.
This is reminiscent of the behavior of a satellite orbit slowly decaying due to
friction into the Earth atmosphere: the satellite dissipates energy but gains
speed as the orbit becomes lower. Thus, if we define the temperature of the
stellar system as proportional to the kinetic energy, we end up, after losing
heat, in a more compact configuration with a higher temperature.

If we now imagine a self-gravitating system embedded in a colder thermal
bath and we assume the existence of an adequate heat transport mechanism
between the bath and the system, the latter will lose energy and become
progressively hotter and more compact.

Within a single N-body system, this picture is still valid if the central
region is so concentrated that its dynamical equilibrium is close to that of
an isolated system. In this case the external region serves as a heat sink for
the core. The core can thus be in the condition of losing energy, heating
the halo, as well as itself, and contracting during the process. This picture
plays an important role for the evolution of globular clusters, where the heat
diffusion is provided by two-body encounters (e.g. see Spitzer 1987, see
also our discussion in Sect. 2.2 for possible applications to elliptical galaxies,
where two-body relaxation is ineffective in providing heat diffusion).

2.1.1 Gravothermal collapse for truncated isothermal

spheres

To quantify this peculiar property of gravitational systems, Lynden-Bell &
Wood (1968) proposed a simple model based on a self-gravitating gas em-
bedded in a perfectly reflecting and non-conducting sphere. The equilibrium
distribution function f(E) of the gas was obtained extremizing the Boltz-
mann entropy S = −

∫

f log f and imposing the conservation of the total
mass and total energy. The result is a one parameter family of truncated
isothermal spheres (with f(E) = A exp {−βE}) with different degrees of
central concentration.

By construction, all these configurations are characterized by the fact that
a first order adiabadic displacement of the gas elements induces no changes
on the value of the entropy S. To evaluate the stability of a specific configu-
ration it is in principle necessary to compute the variation of S up to second
order. However, the stability of equilibrium configurations can be often stud-
ied without resorting to a full computation of the variation of entropy up to
second order, but rather by studying the properties of the series of equilib-
rium. This has been done by Lynden-Bell & Wood (1968) with the method
of the linear series of equilibria (see next Section). If the ratio between the
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central density and the density at the edge of the reflecting sphere is above a
critical level (ρ0/ρedge ≈ 709) the system undergoes a gravothermal collapse,
experiencing a run-away from the equilibrium sequence over a time scale set
by the rate of the heat flow.

2.1.2 The study of the stability: the gravothermal spi-

ral

Following Katz (1978), let us consider a system described by n state variables
xi and let S be a function of the xi variables and of one real parameter ξ.
The system is in equilibrium for configurations that extremize S, i.e. must
hold:

∂iS = 0, (2.1)

for every i.
An equilibrium configuration is stable if the value of S is a local maximum,

i.e. if for every small displacements δxi and δxj we have:

∂ijSδxiδxj < 0. (2.2)

With respect to the parameter ξ, the state variables at equilibrium can
be written as:

xi = X
(a)
i (ξ), (2.3)

with a ranging over the multiplicity of solutions of Equation (2.1). With this
parametrization we define N series of equilibrium in the n + 2 dimensional
space (S, ξ, xi), with N equal to the number of solutions of Equation (2.1).
The points of intersections (bifurcations) of these series are the only points
where a change of stability can happen. It may be also shown that a change
of stability corresponds to a change of sign of an eigenvalue of ∂ijS.

The conditions for the onset of the instability can often be obtained from
the topological properties of the series of equilibrium close to these bifurca-
tions points in the (S, ξ) plane. Let ξ0 be a bifurcation point. In the plane
(S, ξ) we can consider S along a series of equilibrium as a function of the
parameter ξ only, so that:

S(a)(ξ) = S(X
(a)
i (ξ), ξ). (2.4)

The ξ-derivative of S(a)(ξ) is called the conjugate parameter of ξ and, un-

der sufficient regularity of S and X
(a)
i , we can write the ξ-derivative of the

conjugate parameter, i.e. the second derivative of S as:

d2

dξ2
S(a)(ξ) = (∂ξξS)(a) + (∂ξiS)(a) d

dξ
X

(a)
i , (2.5)
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for ξ 6= ξ0. If we assume that the form (∂ijS)(a) is diagonal with eigenvalues

k
(a)
i , we can rearrange the expression above (remembering that we are on the

equilibrium sequence) to obtain, for ξ 6= ξ0:

d2

dξ2
S(a)(ξ) = (∂ξξS)(a) +

n
∑

i=1

((∂ξiS)(a))2

k
(a)
i (ξ)

. (2.6)

The derivative of the parameter conjugate will be in general discontinuous
at a bifurcation point; if this derivative is infinite, then the second term
dominates the equation above, and thus a change of sign in the derivative is
associated with a change of sign of one of the eigenvalues k

(a)
i (ξ). The onset

of an instability can thus be inferred by the topological properties of the
series of equilibrium near the bifurcation points, if the plot of the conjugate
parameter with respect to ξ shows a vertical tangent at those points.

Katz (1978) classifies all the possible topological configurations. The
spiral-like form for the graph (ξ, dS(ξ)/dξ) is typical of the gravothermal
instability (e.g. see our plot in Fig. 2.2) and implies the onset of a new
unstable mode at every point with vertical tangent.

In the case of the gravothermal collapse for a self-gravitating system em-
bedded in a confining shell, the underlying set of variables xi is infinite (Katz
1978), and the equilibrium configurations can be parametrized in terms of the
total energy Etot. Thus the parameter conjugate to the energy (at fixed mass
and volume) is the inverse of the temperature 1/T = (∂S/∂Etot)M,V . Af-
ter some algebra (Lynden-Bell & Wood 1968) it can be shown that 1/T = β
(with the distribution function written as f = A exp {−βE}). The gravother-
mal instability sets in at the first point with vertical tangent in the graph
(β, ETot) (see Fig. 3 in Katz 1978; see also Fig. 2.2), corresponding to a ratio
of the central to edge density of ≈ 709 (e.g., see Lynden-Bell & Wood 1968
and Padmanabhan 1989).

2.1.3 Gravothermal collapse for more realistic models

The symple framework of analysis presented above cannot in general be eas-
ily extended to include realistic models for stellar systems. In fact, a rigorous
derivation of the onset of the gravothermal catastrophe from a study of the
Boltzmann entropy appeared to be available only for the case of ideal systems
confined by a spherical reflecting wall. A number of convincing qualitative
arguments made it clear that also unbound stellar systems with finite mass,
such as those described by the King sequence (King 1966; these spherical
models have a finite radius, but do not require an external wall), should prob-
ably fall into the same physical framework and indeed the paradigm received



28
CHAPTER 2. THERMODYNAMIC DESCRIPTION OF

PARTIALLY RELAXED STELLAR SYSTEMS

a lot of attention, especially in the context of the dynamics of globular clus-
ters (see Spitzer 1987), which are known to possess, at least to some extent,
the desired internal collisionality (see also Lynden-Bell & Eggleton 1980).
[An indirect indication that the general physical picture of the gravothermal
catastrophe is likely to be robust comes also from the proof that the be-
haviour of the classical gas case is basically independent of the assumption
of spherical geometry (Lombardi & Bertin 2001).]

Several investigations have aimed at producing a rigorous derivation of
the gravothermal catastrophe for unbound stellar systems, focusing on the
underlying argument that refers to the Poincaré stability of linear series of
equilibria (Katz 1978, 1979; Padmanabhan 1989), but the proof has always
been centered on an unjustified Ansatz in order to connect the underlying
entropy S with the global temperature T = 1/(∂S/∂Etot) (see Appendix
V in the article by Lynden-Bell & Wood 1968; Katz 1980; Magliocchetti
et al. 1998). Other investigations have explored the possibility of setting the
discussion in the context of non-standard entropies (e.g., the Tsallis entropies;
see the study of the polytropic spheres by Chavanis 2002 and Taruya &
Sakagami 2002). Note that the concept of entropy for collisionless systems
is quite subtle (e.g., see Stiavelli & Bertin 1987 and references therein). One
might even argue whether it is actually compatible with the long-range nature
of gravity, given the fact that self-gravitating systems lack additivity, a key
ingredient in thermodynamics.

In the meantime, inspired by N-body simulations of collisionless collapse
(van Albada 1982), which confirmed the general picture of incomplete violent
relaxation and showed that it can lead to systems with realistic density pro-
files without ad hoc tuning of the initial conditions, some families of models
were constructed able to reproduce, for quasi-spherical configurations, the
characteristic feature of the anisotropy profile with an inner isotropic core
and an outer radially biased envelope (Bertin & Stiavelli 1984; see Bertin
& Stiavelli 1993 and references therein): these families turned out to ex-
hibit the characteristic R1/4 projected density profile and indeed were shown
to match nicely the observed photometric and kinematic characteristics of
bright ellipticals. In an attempt at providing a justification of these models
(in particular, of the so-called f∞ models, constructed initially only from
dynamical arguments) from statistical mechanics, two routes were pursued
(Stiavelli & Bertin 1987).

The first combines an explicit statement of partial relaxation, i.e. of a
relaxation process that is expected to be inefficient in the outer regions, and
the existence of a suitable weight, related to the orbital period, for the cells
that make the relevant partition of phase space; it follows qualitative argu-
ments proposed by Lynden-Bell (1967) and is physically appealing (see also
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Tremaine 1986). It was indeed shown to lead naturally to the f∞ models.
However, this route is not fully satisfactory from the mathematical point of
view, especially since it involves an explicit approximation for the orbital pe-
riod that is applicable only to the low binding energy limit of quasi-Keplerian
orbits. The second route is straightforward from the mathematical point of
view, being based on the classical Boltzmann entropy and on the assumed
explicit conservation of a third quantity Q, in addition to the total mass M
and to the total energy Etot. It was shown to lead to an analytically dif-
ferent family of models (the f (ν) models; see definition in Sect. 2.4 below),
with qualitative properties similar to those of the f∞ models. Those models
were not studied much further and did not receive great attention, not only
because the relevant distribution function is not as simple as that of the f∞

models, but especially because the conservation of Q could only be justified
approximately by inspection of a number of N-body simulations, without a
clear-cut physical justification (see Stiavelli & Bertin 1987; in contrast, the
conservation of the additional A · B invariant sometimes invoked in plasma
physics is rather transparent; see Chandrasekhar & Woltjer 1958).

In this Chapter we introduce the f (ν) models and we take advantage of
their simple statistical mechanics foundation to explore the possibility of a
thermodynamical description of stellar-dynamical models that are endowed
with realistic properties.

A detailed description of the f (ν) models is deferred to Chapter 5, where
we discuss extensively their dynamical properties and we present a first com-
parison with observations.

2.2 Should galaxies be modeled as pure col-

lisionless stellar systems?

Apparently the framework of the gravothermal catastrophe does not appear
to be relevant for the f (ν) models, that have been derived with the goal of
descripting collisionless objects such as elliptical galaxies. We thus make a
short digression in order to bring out the connections between the present
analysis and the evolution of elliptical galaxies.

We start by recalling that, formally, the sequence of King (1966) models
is one special family of solutions of the collisionless Boltzmann equation. Yet,
it is recognized to provide a reasonable description of the current properties
of globular clusters (see Djorgovski & Meylan 1994), within a framework
where these stellar systems continually evolve as a result of a variety of
mechanisms (among which star evaporation and disk shocking; see Vesperini
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1997 and references therein) and where the paradigm of the gravothermal
catastrophe can be applied (see Spitzer 1987). Of course, it is well known
that the level of internal collisionality in globular clusters is relatively high,
so that the above approach is quite natural.

In contrast, one might at first think of dismissing the possibility that
the paradigm of the gravothermal catastrophe should be of interest for the
study of elliptical galaxies, because these large stellar systems lack the de-
sired level of collisionality, judging from the estimate of the relevant star-star
relaxation times. Here, following the spirit of earlier investigations (starting
with Lynden-Bell & Wood 1968), we note that real elliptical galaxies are ac-
tually complex systems the evolution of which goes well beyond the idealized
framework of the collisionless Boltzmann equation. In other words, splitting
their description into past (formation) processes and present (mostly colli-
sionless equilibrium) conditions should be considered only as an idealization
introduced in order to assess the properties that define their current basic
state (Bertin & Trenti 2003).

In practice, elliptical galaxies are expected to be in a state of continuous
evolution, for which we can list several specific dynamical causes: (1) Left-
over granularity of the stellar system itself from initial collapse. Clumps of
stars are likely to continue to form and dissolve in phase space even after
the system has reached an approximate steady state. This acts as internal
collisionality thus making some relaxation proceed even at current epochs.
Indeed, numerical simulations of violent (partial) relaxation show that some
evolution continues well after the initial collapse has taken place. (2) Drag
of a system of globular clusters or other heavier objects towards the galaxy
center. A globular cluster system or the frequent capture of small satellites
(mini-mergers) may provide an internal heating mechanism associated with
the process of dynamical friction by the stars on the heavier objects (Bertin
et al. 2003). (3) Long-term action of tidal interactions of the galaxy with
external objects. (4) Presence of gas in various phases (cold, warm, and hot).
Significant cooling flows have been observed in bright ellipticals. Tradition-
ally, studies of processes of this kind focus on the dynamics of the cooling
gas and keep the background stellar system as ‘frozen’. In reality, energy
and mass exchanges take place between the stellar system and the interstel-
lar medium. (5) Interaction between the galactic nucleus and the galaxy. A
number of interesting correlations have been found between the properties
of galaxy nuclei and global properties of the hosting galaxies (e.g., see Pelle-
grini 1999). These correlations suggest that significant energy exchanges are
taking place between the galaxy and its nucleus. Eventually, if a sufficiently
concentrated nucleus is generated, then star-star relaxation in the central
regions may also become a significant cause of dynamical evolution.
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All of the above are specific mechanisms that are expected to make el-
liptical galaxies evolve in spite of their very long typical star-star relaxation
time. Most of these processes are hard to model and to calculate in detail. As
for the evolution of other complex many-body systems, it is hoped that ther-
modynamical arguments may help us identify general trends characterizing
such evolution. This is the basic physical scenario in which the calculations
presented in this Chapter are expected to be of interest for real elliptical
galaxies.

2.3 Physical approach to the construction of

self-consistent models

We introduce here a short digression and briefly recall that there are different
approaches to the construction of models (i.e. distribution functions) for
collisionless stellar systems that are meant to represent observed astronomical
objects.

One straightforward approach to the problem is to start directly from a
specific distribution function, expressed in terms of the integral of motions
for single particle orbits in a mean potential Φ with given symmetry; such a
function automatically satisfies the Collisionless Boltzmann Equation (Jeans
theorem). The self-consistent potential is then determined by integrating
the Poisson equation, which is reduced to a non linear equation for Φ. The
related self-consistent models are then studied in terms of quantities such as
the intrinsic and projected density profiles and the velocity dispersion profiles
to try to identify interesting models for astrophysical applications. Unfortu-
nately, the variety of possible choices for the form of the distribution function
is in principle infinite and thus the probability to pinpoint meaningful models
in a blind search is extremely low.

Another possible approach would be to start from a given density profile
ρ(r) and from a mean potential Φ(r) and to try to infer from them a self-
consistent distribution function f (i.e., such that ρ =

∫

fd3r) expressed in
terms of given integrals of motions for single particle in the mean field Φ
(usually E or E and J). This fundamental problem of stellar dynamics is
however not guaranteed to have a solution, since the techniques employed,
such as the Abel inversion (Gorenflo & Vessella 1991; Bendinelli et al. 1993),
can lead to a distribution function that is not positive definite and thus has
to be rejected as unphysical2.

2The reason for this potential failure in the inversion process is related to the fact
that only a finite number of constraints on the infinite set of moments of the distribution
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Even neglecting the complications associated to the inversion from ρ to
f , one has to specify a given density and potential profile to start with. If we
are interested in constructing a distribution function to represent the proper-
ties of simulated N-Body systems, this step is straightforward, since we can
measure directly these quantities from the simulations. On the other side,
if the main interest is focused on the comparison with real stellar systems,
such as elliptical galaxies, one has to rely on the constraints imposed by the
observations. However, at variance with some laboratory or space plasmas,
in which it is possible to diagnose interesting phase space properties of the
system under investigation, observations of external galaxies offer very lit-
tle inspiration for the construction of a reliable self-consistent kinetic model.
In fact we face two intrinsic limitations: (1) photometric and spectroscopic
data points sample only limited spatial regions with finite accuracy; (2) when
observed as astronomical objects galaxies appear projected on the plane of
the sky, so that deprojection techniques are needed to reconstruct the in-
trinsic (i.e. three dimensional) dynamical properties of the observed objects.
The deprojection of the data requires specific assumptions on the geometry
of the system and usually is carried out under the assumption of spherical
symmetry.

The two previous paths are consequently unsatisfactory. One may thus
try to combine them and use the observations and the numerical simulations
in order to derive a set of constraints on the dynamical properties of the mod-
els that we would like to build. These constraints are thus taken into account
for chosing a reliable candidate distribution function f , whose properties can
then studied in detail and compared a posteriori with the end products of nu-
merical simulations or with the observations. The problems associated to the
inversion from ρ to f are thus bypassed. One interesting way to constraint
the form of the distribution function is by means of statistical mechanics
arguments, that, e.g., inspired the construction as truncated Maxwellians
of the King models (King 1966) with the goal of describing globular clus-
ters. The statistical mechanics approach has also been applied (Stiavelli &
Bertin 1987, see also next Section) to derive the distribution function of the
f (ν) models, by imposing the conservation of an additional quantity that is
approximately conserved in collisionless collapse simulations.

To furter explore new interesting models, one may also try to investi-
gate the properties of distribution functions that generalize some known and
popular models. Along this line one successful example is the introduction
of radial anisotropy (which is expected to be present in elliptical galaxies)
starting from an isotropic f(E). A distribution function f(E) can in fact be

function is applied.
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Figure 2.1: Specific entropy and total energy along the equilibrium sequence
of f (ν) models with ν = 1 (as a function of the concentration parameter Ψ,
at constant M and Q, and thus expressed by means of the functions σ(Ψ)
and ε(Ψ) defined in the text).

remapped into f(E + J2/r2
a), with ra being a free parameter that controls

the degree of anisotropy introduced into the system (Osipkov 1979; Merritt
1985).

2.4 The f (ν) family of models

Following the idea of building a collisionless model for partially relaxed stel-
lar systems starting from statistical mechanics, let us consider the standard
Boltzmann entropy

S = −
∫

f ln fd3xd3w (2.7)

and look for functions that extremize its value under the constraint that the
total energy

Etot =
1

3

∫

Efd3xd3w, (2.8)

the total mass

M =

∫

fd3xd3w, (2.9)
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and the additional quantity

Q =

∫

Jν|E|−3ν/4fd3xd3w (2.10)

are taken to be constant. Here the functions E and J 2 represent specific
energy and specific angular momentum square of a single star subject to a
spherically symmetric mean potential Φ(r). (We have decided to use the
symbol w, instead of v, for the velocity variable so as to avoid confusion with
the symbol ν.) Some arguments have been provided as to why a quantity
such as Q should be, at least approximately, conserved (Stiavelli & Bertin
1987) and those will not be repeated here. In any case, the conservation of
Q should be taken for the moment as a conjecture. In Chapter 6 we will
discuss this problem further by examining a set of collapse simulations, for
which the conservation of Q will be tested directly.

If only Etot and M were kept fixed, the extremization process would
lead to a Maxwellian, that is to an isothermal and isotropic distribution
function, appropriate for a fully relaxed system. Here the extremization
process leads, because of the assumed conservation of Q, to the following
family of distribution functions:

f (ν) = A exp

[

−aE − d

(

J2

|E|3/2

)ν/2
]

, (2.11)

where ν, a, A, and d are positive real constants. This set of constants provides
two dimensional scales (for example a mass scale Mscale = Aa−9/4d−3/ν and a
reference radius Rscale = a−1/4d−1/ν) and two dimensionless parameters. For
the latter two quantities, we may refer to ν and γ = ad2/ν/(4πGA). The
distribution function is taken to vanish for unbound orbits, that is for E > 0.

The two-parameter family of models is then constructed by solving the
Poisson equation:

∇2Φ(r) = 4πG

∫

f (ν)(r, ~w)d3 ~w, (2.12)

for the potential Φ(r) under the condition that the potential be regular at the
origin and behaves like −GM/r at large radii. This integration leads to an
eigenvalue problem (see Sect 5.2) for which a value of γ is determined by the
choice of the central dimensionless potential, γ = γ(Ψ), with Ψ = −aΦ(r =
0). A given model will be denoted by the values of the two parameters (ν; Ψ)
in parentheses. For the moment we restrict our discussion to the case ν = 1,
thus identifying a one parameter (Ψ) sequence, while in Chapter 5 we present



2.4 The f (ν) family of models 35

a systematic survey of the properties of the models over a wide range of the
parameter space (ν; Ψ).

The main point of the following analysis is the determination of the Boltz-
mann entropy S(M, Q, Ψ) and of the total energy Etot(M, Q, Ψ) along the
sequence of models, i.e. as a function of the “concentration”3 parameter Ψ
defined above. These functions, at constant M and Q, are illustrated in
Fig. 2.1. They have been obtained by noting that, from the definitions of S
and f (ν),

S = −M ln A + 3aEtot + dQ. (2.13)

From the definitions Q = Aa−9/4d−1−3/νQ̂(Ψ) and M = Aa−9/4d−3/νM̂(Ψ)
and the definition of γ, we can express the variables (A, a, d) in terms of
the variables (M, Q, Ψ) and thus find that the entropy per unit mass can be
written as S/M = S0(M, Q) + σ(Ψ), where S0 is constant when the values
of M and Q are fixed, with

σ = − ln
(

M̂
4ν−6
5ν Q̂

6
5ν γ− 9

5

)

+
3Ê

M̂
+

Q̂

M̂
. (2.14)

Here Ê = Ê(Ψ) is the dimensionless total energy defined from Etot =
Aa−13/4d−3/νÊ. From the identity aEtot/M = Ê/M̂ and the expression of
a = a(M, Q, Ψ) obtained previously, we find Etot/M = H(M, Q)ε(Ψ), with:

ε = γ
4
5 M̂− 9ν+4

5ν Q̂
4
5ν Ê . (2.15)

The factor H(M, Q) is a constant when M and Q are taken to be constant.
At fixed ν, the quantities γ(Ψ), M̂(Ψ), Q̂(Ψ), and Ê(Ψ) that enter the
expression of σ and ε depend only on Ψ and are evaluated numerically on
the equilibrium sequence.

This completes the derivation that allows us to draw the analogy with the
classical paper of Lynden-Bell & Wood (1968). This step, straightforward for
the f (ν) models, is by itself interesting and new. In fact, other attempts at
applying the paradigm of the gravothermal catastrophe to stellar dynamical
equilibrium sequences were either based on an unjustified Ansatz for the
identification of the relevant temperature (e.g., see Appendix V in the article
by Lynden-Bell & Wood 1968; Katz 1980; Magliocchetti et al. 1998) or on
the use of non-standard entropies (for less realistic models; Chavanis 2002).

3For a precise definition of the concentration and for its relationship with Ψ see
Sect. 5.2.1.
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2.5 The onset of the gravothermal catastro-

phe for concentrated models

When the f (ν) models were constructed (Stiavelli & Bertin 1987), it was
immediately realized that they have general properties similar to those of
the f∞ models (Bertin & Stiavelli 1984); in particular, for values of ν ≈ 1,
sufficiently concentrated models along the sequence tend to settle into a well
defined overall structure, except for the development of a more and more
compact nucleus, as the value of Ψ increases, and are characterized by a
projected density profile very well fitted by the R1/4 law characteristic of
the surface brightness profile of bright elliptical galaxies. This property is
illustrated in Fig. 2.3.

Now, by inspection of Fig. 2.1 and by analogy with the study of the
isothermal sphere (Lynden-Bell & Wood 1968), we can identify the location
at Ψ ≈ 9 as the location for the onset of the gravothermal catastrophe. This
sequence of models thus has the surprising result that the value of Ψ that
defines the onset of the gravothermal catastrophe is that around which the
models appear to become realistic representations of bright elliptical galaxies
(see also the comparison with NGC3379 presented in Sect. 5.5).

We note that in this regime of high concentration the general properties of
the gravothermal catastrophe are reasonably well recovered by the use of the
Ansatz that the temperature parameter conjugate to the total energy is a, a
quantity directly related to the velocity dispersion in the central regions. Ba-
sically, this was the Ansatz made in the discussion of the possible occurrence
of the gravothermal catastrophe for the King models or for other sequences of
models (e.g., see Lynden-Bell & Wood 1968, Katz 1980, Magliocchetti et al.
1998). Here we have proved that the application of a rigorous derivation,
which is available in our case, gives rise to relatively modest quantitative
changes in the (Etot, 1/T ) diagram for values of Ψ close to and beyond the
onset of the catastrophe (see Fig. 2.2). However, in Sect.2.7 we will draw
the attention to an interesting, qualitatively new phenomenon missed in the
previous derivations based on the use of the a-Ansatz.

In passing, we note that in this regime of relatively high concentrations,
the f (ν) models possess one intrinsic property that makes them more ap-
pealing than the widely studied f∞ models. This is related to the way the
models compare to the phase space properties of the products of collision-
less collapse, as observed in N-body simulations (van Albada 1982). In fact,
one noted unsatisfactory property of the concentrated f∞ models was their
excessive degree of isotropy with respect to the models produced in the simu-
lations. Here we can easily check that the anisotropy level of the concentrated
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f (ν) models, while still within the desired (radial orbit) stability boundary
and still consistent with the modest amount of radial anisotropy revealed by
the observations, seems much closer to that resulting from N-body simula-
tions of collisionless collapse; in particular, the anisotropy radius rα, defined
from the relation α(rα) = 1, with α = 2 − (〈w2

θ〉 + 〈w2
φ〉)/〈w2

r〉, is close to
the half-mass radius rM (while for the f∞ models it is about three times as
large). This is illustrated in Fig. 2.4.

2.6 The R1/4 law and deviations from it

The intermediate Ψ regime (the precise point that marks the low Ψ regime
will be identified in the next Section) is a regime where the models appear to
be stable, with respect not only to the gravothermal catastrophe (following
the arguments provided earlier; but we should recall that the catastrophe
is expected to require a sufficiently high level of effective collisionality in
order to take off) but also to other instabilities (see our set of simulations
in Sect. 4.2). The relatively wide variations, between Ψ = 3.5 and Ψ = 9,
in all the representative quantities that characterize the equilibrium models
suggest that this part of the sequence could be used to model the weak
homology of bright elliptical galaxies (see Bertin et al. 2002), much like the
sequence of King models is able to capture observed systematic variations in
the structure of globular clusters (see Djorgovski & Meylan 1994). In this
regime the projected surface brightness of the models can in fact be well
represented by a Sersic R1/m law (Sersic 1968; m = 4 corresponds to the
R1/4 law proposed by de Vaucouleurs 1948) with 2 . m . 8, as discussed in
Sect. 5.3.2.

2.7 Negative global temperature and the ra-

dial orbit instability

The low Ψ regime is marked by an unexpected and significant difference
with respect to the low concentration limit of the classical isothermal sphere
(Bonnor 1956; Lynden-Bell & Wood 1968). In fact, while the classical case
reduces to the ideal non-gravitating gas, to which Boyle’s law applies, for
the f (ν) models the system remains self-gravitating and with a significant
central concentration (see Fig. 5.2). A clear-cut proof of this difference is
given by inspecting the behavior of the global temperature T , identified from
the thermodynamical definition T = 1/(∂S/∂Etot). While the temperature
defined by the a-Ansatz remains obviously positive definite, by definition,



38
CHAPTER 2. THERMODYNAMIC DESCRIPTION OF

PARTIALLY RELAXED STELLAR SYSTEMS

-0.03 -0.025 -0.02 -0.015 -0.01

10

20

30

Figure 2.2: Instability spiral of f (ν) models with ν = 1. The solid line refers
to the results obtained with the a-Ansatz (with â = γ−4/5M̂ (ν+1)/(5ν)Q̂−4/(5ν)

identified as inverse effective temperature). Crosses represent the global
temperature from the definition ∂S/∂Etot ; other symbols indicate estimated
points for which the adopted numerical differentiation is less reliable. The
values of Ψ and ε for points A and B with a vertical tangent, where unstable
modes set in if the system is isolated, remain unchanged.
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Figure 2.3: Residuals µ(ν) − µ1/4 obtained by fitting the R1/4 law to the
projected density profile of f (ν) models for ν = 1 and some values of Ψ.
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Figure 2.4: Anisotropy along the equilibrium sequence: anisotropy radius in
units of the half mass radius 2rα/rM and the anisotropy parameter 2Kr/KT

(ratio of total kinetic energy in the radial direction to that in the tangential
directions) of f (ν) models with ν = 1.

if we look at Fig. 2.1 we see that the global temperature T changes sign
at Ψ ≈ 3.5. This marks a drastic qualitative deviation from the classical
studies.

Here we note a curious coincidence of this transition value of Ψ with the
value around which the sequence is bound to change its stability properties
with respect to the radial orbit instability (Polyachenko & Shukhman 1981).
Indeed, the location where the sequence is expected to become unstable in
this regard is precisely that defined by Ψ ≈ 3.5, as can be judged from
inspection of Fig. 2.4; around those values of Ψ the level of radial anisotropy,
as measured by 2Kr/KT reaches the threshold value of 1.8− 2, known to be
sufficient for the excitation of the instability (the precise value of 2Kr/KT

corresponding to marginal stability is model dependent; for some sequences
the reported value is below the range suggested by Polyachenko & Shukhman
1981; see also Chapter 4).

These clues appear to be interesting and important, but more work is
required before a final claim can be made that there is indeed a direct relation
between the dynamical radial orbit instability and the fact that the system
possesses a negative global temperature, as we found based on the simple
work presented here.
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2.8 Conclusions

A relatively straightforward and simple thermodynamical description of an
equilibrium sequence constructed earlier and known to possess realistic char-
acteristics with respect to bright elliptical galaxies shows that, on the one
hand, the paradigm of the gravothermal catastrophe may be adequate to
explain the occurrence of realistic properties in models of collisionless stellar
systems and, on the other hand, a long-known dynamical instability might
be interpreted in terms of a thermodynamical argument.

Probably the main open question regarding the models discussed here,
partially addressed in previous studies (see Stiavelli & Bertin 1987), is to
what extent the quantity Q is actually reasonably well conserved during in-
complete violent relaxation. The investigation of this issue, which will be
presented in the next Chapters, combined with other dynamical and ther-
modynamical considerations, will turn out to lead to the identification of the
f (ν) models as a family of equilibrium models with optimal behavior with
respect to statistical mechanics, with respect to what we know about col-
lisionless collapse, and with respect to the problem of providing a realistic
representation of bright elliptical galaxies.



Chapter 3

Simulating stellar systems

In this Chapter we discuss the different numerical techniques that can be
employed to simulate collisionless stellar systems. In particular we describe in
detail the structure, the performance and the available diagnostic subroutines
of the Collisionless Galactic Simulator (CGS), a particle-grid code that we
have developed. This Chapter constitutes also a user manual for the CGS
code, where the motivations behind the choices operated while designing the
program are critically analyzed.

3.1 Review of numerical methods

Numerical simulations of self-gravitating systems have become an invaluable
tool in stellar dynamics and are extensively used to study many problems,
often three-dimensional and/or non-linear. In fact, in those cases the study
with purely analytical methods is usually restricted to highly idealised treat-
ments, or to “toy models”. In recent years computer performance has grown
together with the development of new and more powerful simulation codes.

In principle, two approaches to the problem of simulating a self gravitating
stellar system are possible.

One may run a simulation using one particle for each body (star) in
the system. This approach is extremely demanding from the point of view
of computational time, since the complexity of the gravitational interaction
scales as the square of the number of particles employed. Thus at present the
method is viable only to simulate the dynamics of stellar systems with sizes
up to that of a globular cluster (i.e. with a order of 105 particles). In this
Thesis we are mainly interested in the dynamics of elliptical galaxies, where
the number of stars is many orders of magnitude greater than the number of
particles that current computers can handle. We will thus just review below



42 CHAPTER 3. SIMULATING STELLAR SYSTEMS

the basic ideas at the base of direct simulations, redirecting the interested
reader for further details to the specialized literature on the topic (see, e.g.
Heggie & Hut 2003, and references therein).

Thus, if the number of physical constituents of the system is too high
for the available hardware, a direct simulation may be computationally too
expensive to be performed, and one may instead assume a mean field de-
scription using the formalism of distribution functions, i.e. consider that
the dynamics be well represented by the Collisionless Boltzmann Equation
(CBE):

∂f

∂t
+ ~w · ∂f

∂~x
− ∂Φ

∂~x
· ∂f

∂ ~w
= 0, (3.1)

where f(~x, ~w, t) is the one-particle phase-space distribution function of the
system, and Φ is the gravitational potential generated by the system:

∇2Φ(~x, t) = 4πG

∫

d3 ~wf(~x′, ~w, t). (3.2)

A direct solution of the CBE (Equation 3.1) on a Eulerian grid, in the six
dimensional phase space, encounters severe memory limits (a low resolution
grid with 30 elements in each dimension would require several Gigabytes of
memory just to be stored1). Thus the problem is usually approached by
using the method of the characteristics (see, e.g. Ciotti 2000, Chapter 3):
since Equation (3.1) states that f is constant along all the trajectories, we
can obtain a representative sample of the distribution function f at time
t by sampling it at time 0 and evolving the so obtained N-body system.
However there is a crucial physical difference between this kind of N-body
systems and those related to exact collisional methods. The particles in a
collisionless N-body simulation do not represent physical entities, but are
rather Monte Carlo representations of an underlying continuous distribution
function. Thus these particles should interact with one another only via a
mean field, i.e. the exchange of energy due to direct encounters must be
suppressed in the simulation.

3.1.1 Direct methods

Here we start by reviewing the standard methods used in direct N-body
simulations. We recall however that these methods are not appropriate for
simulations of collisionless systems.

In principle implementing an exact N-body simulation is straightforward.
The evolution of the system is governed by a system of second order ordinary

1However codes with a five dimensional cartesian grid are used for similar simulations
in the area of plasma physics (e.g., see Mangeney et al. 2002).
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differential equations (ODE) where the acceleration ~a(i) on a particle i is
given by the direct gravitational interaction with each other member j of the
system2:

~a(i) = −G

N
∑

j=1; j 6=i

m(j)

~x(i) − ~x(j)

|~x(i) − ~x(j)|3
. (3.3)

The positions and velocities at a given time that define the initial conditions
for the ODE can be advanced by a given time step ∆t with one of the
standard methods to solve differential equations, such as a Runge-Kutta or
Hermite scheme (e.g., see Press et al. 1986, Chapter 8). Unfortunately, a
naive approach to direct stellar dynamics has to face several problems. In
fact, not only the computational complexity of a direct code scales as N 2,
but also large errors can arise when two particles are close together if the
time step is not chosen appropriately. In fact, the dynamical time scale for
close encounters (where |~a| can diverge) can be orders of magnitude smaller
than the mean dynamical time scale for the system. If the same time step
is shared by all the particles, one must choose between accepting unbound
errors or reducing the time step to the scale set by the close encounters. The
latter choice can also have severe consequences in a simulation, since a huge
amount of computing time will be spent by advancing all the particles on a
time scale much less than their typical dynamical time, so that the system
will appear as “frozen”.

To allow accurate and reliable simulations sophisticated techniques have
been developed, such as individual time steps and special (exact or asymp-
totic) treatment of two and three body encounters via the so-called KS trans-
formations (Kustaanheimo & Stiefel 1965). A review of these collisional
methods is outside the scope of this Thesis; the interested reader may con-
sult the monography by Heggie & Hut (2003) and references therein.

One intrinsic limitation of exact techniques is that they are intrinsically
demanding from the computational point of view, so that only systems with
N . 3×104 can be simulated on a standard workstation in a reasonable time
(i.e. a week) over a time of the order of the two-body relaxation timescale
(i.e. around 108 − 109yr for typical globular clusters). A series of special
purpose hardware designed to obtain high performance in computing the
gravitational interaction has been recently developed (Makino et al. 2003):
the Grape-6 cluster in Tokyo is at the moment the fastest computer in the
world, with a peak performance above 60 Teraflops. The next generation
Grape hardware is expected to break the barrier of 1 Petaflops.

2This point is the key difference between collisional and collisionless methods; for the
latter the particles interact via a mean field.
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3.1.2 Tree codes

In these numerical schemes, the information about the density field is set up
in the form of a hierarchical tree. Each level of the tree specifies for a region
in the simulation volume the position of the center of mass, the total mass
(monopole moment) and higher moments of the mass distribution (usually
up to the quadrupole term). The tree can be constructed by recursively
subdividing the simulation volume (enclosed in a cube of size Lbox) into eight
equal parts at each level, as in the scheme proposed by Barnes & Hut (1986).
This subdivision of cells is continued until there is at most one particle per
cell at the smallest level (see Fig. 3.1). The interaction at small scales is
softened to suppress direct encounters making these schemes suitable for
collisionless N-body simulations. The collective force by particles in distant
regions in the simulation box is approximated by the force from the center of
mass of the region, computed up to the desired multi-pole expansion. This
approximation to compute the force on a particle i from a region of size LR

is used if the distance of the center of mass of the region from the particle
i is greater than LR multiplied by an accuracy parameter. This leads to a
reduction in the number of operations required for calculating the force. [For
a detailed discussion see, e.g. Barnes & Hut 1986]. To estimate the number
of operations for setting up the tree structure and for evaluating the force we
note that during the tree building phase each particle is parsed at most once
at each level, therefore the upper bound on the total number of operations
is proportional to N ln(Lbox/lmin) where lmin is the smallest inter-particle
separation for the given distribution of particles. We have,

lmin ∝ n−1/3
max = δ−1/3

max 〈n〉−1/3 = N−1/3Lboxδ
−1/3
max (3.4)

where 〈n〉 is the average number density, δmax is the maximum density con-
trast and nmax is the highest number density in the given distribution of
particles (nmax = δmax〈n〉). This implies that the upper bound on the num-
ber of operations is, in the leading term, O(N ln N). Similarly, it can be
shown that also the force calculation scales as O(N ln N) in the algorithm.
Recently a fast tree-like method (GyrFalcON ), i.e. one that scales linearly
with N , has been proposed (Dehnen 2000, 2001). We have used the fast
tree code of Dehnen both as a validation tool for our particle-mesh code (see
Sect. 3.6) and as an independent code to run some simulations of violent
collapse (see Chapter 6).
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Figure 3.1: Tree building, with a hierarchical partition method from first
panel (upper-left) to the bottom-right one.

3.1.3 Particle-Mesh (PM) codes

This class of N-body methods is based on the use of a grid, usually Cartesian,
for computing the potential and the force. The Poisson equation is solved in
the Fourier domain by computing on the mesh the density field, which is the
source for the gravitational potential, starting from the particle positions and
using a suitable interpolating function. The force is then interpolated, using
the same grid, to the particle positions in order to move them. This “smooth-
ing” of the particles (which effectively assume a finite size, extended over a
few grid cells) limits the resolution of the simulation to the scale of the grid
size3, but particles interacts only via the mean field, and thus the evolution
is nearly collisionless. This property makes PM codes the natural choice for
numerical simulations of N-body systems associated with a discrete represen-
tation of a continuous distribution function (as is appropriate for collisionless
systems). However, as we discuss in Sect. 3.5, there is a residual numerical
collisionality measured as the rate of diffusion for the single-particle binding
energies in equilibrium configurations. The complexity of PM codes scales
linearly with the number N of particles used, allowing to employ easily more
particles than in direct or tree code simulations.

To obtain higher spatial resolution a modification of the standard PM
codes has been proposed: a Particle-Particle Particle-Mesh (P 3M) code (Ef-

3A cell must be large enough to contain several tens of particles so as to reduce errors
induced by fluctuations of the occupation number.
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stathiou et al. 1985). Here a correction to the mesh force is added for pairs
of particles with separation of the order of, and smaller than, the grid length.
While the complexity remains linear in the number of particles, the efficiency
decreases when regions of high density are present.

3.1.4 Self Consistent Field (SCF) methods

This method, which broadly derives from PM schemes, solves the Poisson
equation by expanding the density and the potential in a set of suitable basis
functions. The expansion can be partial (see e.g. van Albada 1982; Villumsen
1982; McGlynn 1984) or complete (SCFM, Hernquist & Ostriker 1992). The
key for the success of the SCF approach is to choose a basis whose first
elements are suited to capture the global structure of the simulated system.
If this is the case, the expansion can be truncated at relatively low orders
with negligible errors. Usually this method is best suited to model the large-
scale structure of systems with approximate symmetry (mostly spherical and
with a regular density profile). The complexity of the method is linear in
the number of particles N and (sub) linear in the number of members Nb of
the basis functions used. This allows, as for the case of PM codes, to use
millions of particles on a modern workstation. Furthermore this scheme can
be naturally parallelized since at each step N 1-body problems are effectively
solved instead of a single N-body problem.

The code constructed and used in this Thesis, developed as a tool for
investigations on the formation and the evolution of spheroidal collisionless
stellar systems is based on this idea and will be discussed in quantitative
detail in Sect. 3.3.1.

3.2 The choice of the code for the goals of

this Thesis

Among the variety of available N-body algorithms it is important to choose
the most appropriate for the specific astrophysical problem one is interested
in. As we have seen in the brief review above, each different method presents
a trade-off between accuracy, complexity and introduction of undesired nu-
merical effects.

In this Thesis we are interested in simulating the evolution of nearly
spherical systems such as elliptical galaxies, which are thus made of many
billions of stars. We are consequently excluding direct methods, since: (1)
Each particle in the simulation is representative of many real stars and we
want to suppress two-body encounters; (2) We would like to resolve a wide
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dynamical range, from the central regions to the outer halo (i.e. we require
the use of as many particles as possible at fixed CPU resources), so that we
prefer a fast code, such as one based on the particle-mesh/self consistent field
approach.

We have thus opted for a self consistent approach (van Albada 1982)
based on the expansion in spherical harmonics, which can take advantage
of the nearly spherical geometry of the configurations that we are interested
in. Since we wish to study not only the stability of certain equilibrium
configurations (see Chapter 4) but also the process of violent collapse (see
Chapter 6), we have decided to use an adaptive radial grid that can match the
different density profiles that arise during the collapse phase from cold initial
conditions, before the system settles down in a stationary configuration.

The use of a spherically symmetric radial mesh combined with an ex-
pansion in spherical harmonics for the angular variables allow us to capture
extremely well, with only relatively few particles (i.e. ≈ 106), the large scale
structure of the products of violent collapse over a wide dynamical range (i.e.
almost 10 orders of magnitude in the density; see Chapter 6). Our choice is
supported by the results of Lemson (1995), who compares the final states of
cold collapse simulations performed with the original version of van Albada’s
code with those obtained by running the same simulations with a tree code.
He finds very similar final density and anisotropy profiles. We have also per-
formed a similar test by evolving the same initial conditions with our code
and with GyrFalcOn, the fast tree code of Dehnen (2000), showing that the
final properties differ by less than 10 %.

To be sure, if the initial conditions are too inhomogeneous, a mean field
approach would not perform well. In these cases we use Dehnen’s tree code
as a preferred tool.

3.2.1 Softening, relaxation

Since the focus of this Thesis is on collisionless stellar dynamics, we would
like to briefly discuss here what are the properties of the numerical methods
(particle-mesh and tree code) that we use to simulate N-body systems with
respect to two-body relaxation.

To define the typical two-body relaxation time scale, let us consider a
test star in a N-body system. The orbit of this test particle will be scattered
as a result of the direct gravitational interaction with the other stars of the
system. On average, the net gain of velocity ∆v⊥ in the velocity component
transverse to the direction of the motion will be zero, but the sum of (∆v⊥)2

will increase after each deflection. We define the relaxation time scale trel as
the time at which the cumulative value of (∆v⊥)2 is of the order of the initial
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specific kinetic energy of the test particle.
Assuming that the test particle (of mass mt) has an initial velocity v∞ and

is incident upon a system of field stars, each of mass mf , initially at rest and
with uniform density, we can write the relaxation time as (Chandrasekhar
1942):

trel =
v3
∞

8πnG2m2
f lnΛ

, (3.5)

where n is the number density of the field stars and Λ = bmax/b0 is the ratio
between the maximum impact parameter bmax and a typical scale for the
impact parameter b0 (with b0 = G(mf + mt)/v

2
∞). The introduction of the

cut-off bmax in the impact parameter is motivated by the fact that, due to
the long range nature of the gravitational force, the quadratic variation of
the deflection ∆v⊥ is unbound in an infinite homogeneous background.

If we now consider a gravitational N-body system of finite size in dy-
namical equilibrium, we can use the expression (3.5) and estimate the values
assumed by v∞, n, mf and Λ. We obtain that the relaxation time trel is re-
lated to the dynamical time scale td, i.e. the typical crossing time for the
system, by:

trel ≈
N

8 lnN
td. (3.6)

In this Thesis typical simulations have N & 105 and the evolution of the
N-body system is followed for trun ≈ 20td, so that trun � trel.

To suppress two-body relaxation we can resort to particle-mesh schemes
that are formally truly collisionless. The particles do not “see” each other di-
rectly (two-body encounters are suppressed and no binaries can be formed),
but rather interact only via the mean field. In reality, numerical effects such
as Poisson noise and interpolation errors in the force assignment (usually the
force is computed over the grid points and then interpolated to the particle
positions) introduce artificial relaxation that mimics two-body relaxation.
As discussed by Hernquist & Ostriker (1992), the collisionality present in
the system may be quantified by measuring the single particle energy scat-
ter during simulations of stable equilibrium configurations. In Sect. 3.5 we
quantify this numerical diffusion for our CGS code compared to the SCFM
implementation given by Hernquist & Ostriker (1992) finding that the level
of relaxation is very similar in the two codes.

A possible solution for further reducing the collisionality could be the ap-
plication of the recent results on wavelet filtering to “de-noise” particle-mesh
simulations (Romeo et al. 2004). For specific dynamic configurations the au-
thors claim an effective reduction of the noise by a factor ≈ 30, which would
make the simulation equivalent, with respect to the relaxation properties, to
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a standard realization with 100 times more particles. This result seems to
be of great interest, but clearly more tests are needed to evaluate the general
applicability.

Quite surprisingly, Hernquist & Ostriker (1992) find also that the level
of relaxation, measured as the rate of diffusion in the single-particle energy
space E, is rather similar to that of a typical tree-code with a softened inter-
action at small scales. This result is indeed interesting since here softening
would not be expected to reduce much the two body-relaxation (Dehnen
2001; see also Theis 1998). In fact, as shown by Chandrasekhar (1943) and
by Spitzer & Hart (1971), two-body relaxation is driven by close as well as
by distant encounters: each octave in distance is contributing equally. Soft-
ening suppresses only the contributions by close encounters, while most of
the relaxation is the result of noise on large scale, that cannot be erased
with softening techniques. Hernquist (1987) also shows that a tree code has
basically the same relaxation time-scale of an exact simulation with the same
number of particles. This would thus imply that in practice the level of nu-
merical relaxation in particle-mesh and self-consistent field codes, formally
expected to be collisionless, is indeed not too different from that of exact
simulations.

In closing we thus stress that the true benefit of softening, given either by
the effective smoothing on the length scale given by the size of the cells (in PM
codes) or by the softening length (in tree codes), is to avoid the formation
of binaries and to suppress close encounters, which would be completely
artificial in N-body simulations of the evolution of collisionless systems. The
regularization of the force on small scales also allows to use efficiently the
simple leap-frog integrator, which is known otherwise in direct simulations
as highly inefficient.

3.3 The Collisionless Galactic Simulator (CGS)

code

We first considered as ideal for our investigations the code introduced by
van Albada (1982) (see also van Albada & van Gorkom 1977), which was
used to run the pioneering N-body simulations of collisionless collapse that
demonstrated how violent relaxation can act as a driver for the formation
of elliptical galaxies. Unfortunately, the code performance was optimized
for a typical number of particles smaller than 104 by the introduction of a
three dimensional grid, logarithmic in radius and equally spaced in cos θ and
φ. The force interpolation from the grid to the particles was performed by
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assuming a linear interpolation in θ. This introduces a numerical force along
the z axis, which induces an artificial stretching of the simulated system.
Due to this force, the energy and the angular momentum conservations were
reduced to a level roughtly equivalent to that of a Poisson noise associated
with 103 − 104 particles.

When we began our work and tried to use the code with a higher num-
ber of particles (up to one million), we experienced poor accuracy. We soon
realized that its source was the systematic effect of mis-interpolation men-
tioned above. In collaboration with van Albada we have cured the problem
by rewriting the Poisson solver, as described in Sect. 3.3.3.

Although we should not claim yet to have improved the old code so as
to make it competitive for general purposes with respect to state of the art
implementations of tree codes, the CGS code performs very well for the class
of applications we are interested in, being in line with the accuracy of the
SCFM by Hernquist & Ostriker (1992) for all the tests that we have run. The
new version of the code is certainly competitive and can be used successfully
if its applications are focused on the evolution of quasi-spherical, smooth
initial conditions.

Finally, by working on the new version of the code we had the opportunity
to examine and to master the key problems that have to be faced in order
to design an efficient and reliable code. And this was a great and exciting
experience!

3.3.1 Structure

The key feature of the code is the solution, by means of Fourier techniques,
of the Poisson equation ∇2Φ = 4πGρ, which relates the mean potential Φ of
the system to the mass density ρ. Once the potential has been computed by
expanding the density in spherical harmonics, the acceleration is obtained
by numerical differentiation, and the particles are advanced by a fixed time
step using a leap-frog scheme.

At variance with the original code by van Albada , to preserve accuracy
and absence of systematic errors, we decided to drop the angular grid and
to treat exactly, in terms of the single-particle Legendre polynomials, the
angular dependence of the force.

This choice moves effectively the code toward the implementation of the
self-consistent field code by Hernquist & Ostriker (see also Sect. 3.5 for a
discussion of the differences between our and their approach). We still keep
the radial grid because of its flexibility with respect to the initial conditions
considered (we use a subroutine to generate a grid containing a fixed fraction
of the total mass in each shell). During the simulation, the grid is updated,
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if needed, at regular intervals, in order to follow properly the evolution of the
density profile in non equilibrium conditions, such as those that arise during
the collapse experiments starting from cold initial conditions that we have
performed (see Chapter 6).

The time step is fixed for all the particles, but can be chosen, if desired,
adaptively in order to ensure that the fastest particle is traveling for less
than one grid spacing in one step. Introducing individual (or groups) time
steps would not significantly impair the performance of the code. In fact, as
discussed in Sect. 3.3.4, approximately 40% of the total CPU time is spent to
compute the potential, an operation that must be performed at every time
step, even if we want to advance only a few particles.

The code is completed by a subroutine to perform several optional diag-
nostic tests, such as the conservation of energy and angular momentum, the
evolution of the Lagrangian radii (i.e. the radii of the spheres containing a
fixed fraction of the total mass), the density and pressure anisotropy profiles,
the single-particle binding energy and angular momentum distributions.

If desired, a snapshot with the individual masses, positions and velocities
of all the particles at fixed times can be saved on the disk.

For the code we use a default system of units tuned on typical galactic
scales. In fact, the mass unit is 1011M�, the length unit 10 kpc, and the
time unit 108 yr. This implies that the gravitational constant G assumes
a value of ≈ 4.497, and that the unit for the velocity can be expressed
as, approximately, 97.8 km/s. The system of units can, however, be easily
changed by the user in the parameters file.

When possible we prefer to avoid the explicit mention of physical units
(since in principle pure gravitational models are scale free) and we often
report our results in terms of the dynamical time td defined as:

td =
GM5/2

(−2Etot)3/2
. (3.7)

In Fig 3.2 we present a scheme of the main driver.

3.3.2 Advancing the particles: leap-frog, time reversibil-

ity

Particles are advanced in time using a simple leap-frog scheme (see, e.g. Hut
& Makino 2004, Volume 3), written here for simplicity for one particle and
in one dimension:

vt+∆t/2 = vt−∆t/2 + a(xt)∆t + O(∆t3), (3.8)

xt+∆t = xt + vt+∆t/2∆t + O(∆t3), (3.9)
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STRUCTURE OF THE CODE:

MAIN DRIVER

|

|---INIT PARAMETERS OF SIMULATION

|---INIT PARTICLES

|---INIT GRID

|---INIT POISSON SOLVER/ ACCELERATION ASSIGNMENT

|

(DO)---+

^ |---PARTICLE TO GRID ASSIGNMENT

| |---POISSON SOLVER

| |---UPDATE VELOCITIES T-DT/2 --> T+DT/2

| |---UPDATE POSITIONS T --> T+DT

| |

| (IF REQUIRED)|---CHOOSE NEW TIMESTEP

| |

| (IF REQUIRED)|---GRID UPDATING/RECENTERING @ CM OF THE SYSTEM

| |

| (IF REQUIRED)|---DIAGNOSTIC SUBROUTINES

| |

| (CHECK EXIT )---STORE PARTICLES DATA FOR RE-RUN

| |

+-----+

Figure 3.2: Scheme of the main driver of the CGS code.
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where a(x) is the gravitational acceleration. As can be seen from the above
equations, in the leap-frog scheme the positions and the velocities are not
defined at the same time, but are displaced by half a time step. In the nu-
merical implementation of the CGS code we take into account this property
by properly initializing the velocities at −∆t/2 at the beginning of the sim-
ulation and by updating the velocities by half a time step in the diagnostic
subroutine.

This off-set of the velocities ensures (1) second order accuracy, although
at first sight the scheme would appear to be only accurate to first order; (2)
a time reversal symmetry of the two Equations (3.8-3.9), if the time step ∆t
is fixed. The latter fact can be proved easily by considering the application
of one leap-frog time step −∆t starting from (xt+∆t; vt+∆t/2) (the end state
of Equations 3.8-3.9) and recalling that now, since we look back in time, the
velocity is ahead in time with respect to the position and thus the position
has to be updated first:

x(t+∆t)−∆t = (xt + vt+∆t/2∆t) − vt+∆t/2∆t, (3.10)

v(t+∆t/2)−∆t = (vt−∆t/2 + a(xt)∆t) − a(xt)∆t, (3.11)

which, after simple manipulations of the right sides, give us exactly the orig-
inal starting point (xt; vt−∆t/2).

However during a simulation the time symmetry for “long” runs is hard
to preserve. In fact, small errors, such as interpolation approximations or
truncations, appear at several points during the execution of the code, and
these small errors give rapidly rise to an exponential divergence of the parti-
cles trajectories (see, e.g. Kandrup & Sideris 2003, and references therein).
In our code we have verified that the typical time scale that ensures time
reversibility is (much) greater than the dynamical time td. In fact we have
evolved a Plummer model with 8× 104 particles for 5td forward in time and
then backward, ending up in a final state where the particle positions differ
very little from the initial values (i.e. 〈|∆~x(i)|/|~x(i)|〉 . 0.02). The code per-
forms well also in non stationary conditions: we have tested time reversibility
in a simulation where the system is unstable against radial orbit instability
(see Chapter 4) and evolves toward a flattened configuration. By simulating
backward in time the triaxial configuration obtained by evolving an unstable
(1/2; 3) f (ν) model for 14 td we have been able to “rewind” the evolution of
the system for more than 6 td with very small mean displacements both with
respect to global properties, such as the ellipticity of the system, and to the
individual orbits; for longer look-back times the chaotic nature of the system
is evident and the radial orbit instability triggers again (see Fig. 3.3).
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Figure 3.3: Evolution forward and backward in time for a (1/2; 3) f (ν) model
simulated with 8 × 104 particles using the CGS code. In the left panel the
ellipticity ratio ε and η are plotted (ε = b/a, η = c/a, where a > b > c are
the axes of the system computed from the inertia tensor), while in the right
panel we give the evolution of the x position for one random particle in the
simulation. Solid lines represent the evolution forward in time, while dashed
ones show the backward evolution. From the plots the typical reversibility
time scale is of the order of 6 td (from ≈ 8 to 14 td).

3.3.3 The Poisson solver

The potential Φ and the mass density ρ are related to each other via the
Poisson equation ∇2Φ = 4πGρ, where G is the constant of gravitation. In
spherical coordinates (r, θ, φ) this becomes:

1

r2

∂

∂r

(

r2∂Φ

∂r

)

+
1

r2sinθ

∂

∂θ

(

sinθ
∂Φ

∂θ

)

+
1

r2sin2θ

∂2Φ

∂φ2
= 4πGρ. (3.12)

Equation (3.12) can be solved by the method of separation of variables and
by expressing the results in terms of spherical harmonics. The expression
in spherical harmonics, where P m

l are the associated Legendre functions of
degree l and order m, for the density is given by:

ρ(r, θ, φ) =

∞
∑

l=0

∞
∑

m=0

P m
l (cosθ) [Alm(r)cos(mφ) + Blm(r)sin(mφ)] , (3.13)
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while the potential Φ can be expressed as:

Φ(r, θ, φ) =

∞
∑

l=0

∞
∑

m=0

P m
l (cosθ) [Clm(r)cos(mφ) + Dlm(r)sin(mφ)] . (3.14)

The spherical harmonics P m
l (cosθ)cos(mφ) and P m

l (cosθ)sin(mφ) are a com-
plete set separable with respect to the operator ∇2, so the Poisson equation
(3.12) leads to a second order ordinary linear differential equation for each
combination of l and m separately:

d2Clm(r)

dr2
+

2

r

Clm(r)

dr
− l(l + 1)

r2
Clm(r) = 4πGAlm(r). (3.15)

A similar equation can be obtained for Dlm by replacing Alm with Blm. The
linear equation (3.15) can be solved by the method of variation of parameters,
which gives:

Clm(r) = c1lmr−l−1 + c2lmrl + (3.16)

− 4πG

2l + 1
r−l−1

∫ r

r1lm

dssl+2Alm(s) +
4πG

2l + 1
rl

∫ r

r2lm

dss1−lAlm(s),

where the integration constants c1lm and c2lm are to be chosen so that the
potential is everywhere finite. If we choose Φ(∞) = 0, the coefficients of the
terms with rl must vanish, that is:

c2lm = − 4πG

2l + 1

∫ ∞

r2lm

dss1−lAlm(s), (3.17)

for all positive l, m. At the origin the potential must be finite, thus the
coefficients of the terms with r−l−1 must be zero:

c1lm = − 4πG

2l + 1

∫ r1lm

0

dssl+2Alm(s). (3.18)

Inserting these expressions back into Equation (3.16) gives the solution of
the differential Equation (3.15):

Clm(r) = C1lm(r) + C2lm(r), (3.19)

with

C1lm = − 4πG

2l + 1
r−l−1

∫ r

0

dssl+2Alm(s). (3.20)

and

C2lm = − 4πG

2l + 1
rl

∫ ∞

r

dss1−lAlm(s). (3.21)
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The two terms can be seen as the contribution from the mass inside (C1lm)
and outside (C2lm) the radius r.

The function Alm(r) is determined from the density distribution ρ(r, θ, φ):

Alm(r) =
(2l + 1)(2 − δ(m))

4π

(l − m)!

(l + m)!
×

∫ +π

0

dθ sin θP m
l (cos θ)

∫ +π

−π

dφ cos (mφ)ρ(r, θ, φ), (3.22)

with δ(l) is defined as δ(0) = 1 and δ(m) = 0 if m 6= 0. Similarly, Blm is
found by replacing cos (mφ) by sin (mφ) in the equation above.

The acceleration is then computed by taking the relevant partial deriva-
tives of the potential (3.14), soas to obtain the following expressions:

ar(r, θ, φ) =

−
∞
∑

l=0

l
∑

m=0

P m
l (cos θ) (Elm(r) cos (mφ) + Flm(r) sin (mφ)) , (3.23)

aθ(r, θ, φ) =

−
∞
∑

l=0

l
∑

m=0

dP m
l (cos θ)

dθ
(Glm(r) cos (mφ) + Hlm(r) sin (mφ)) , (3.24)

aφ(r, θ, φ) =

−
∞
∑

l=0

l
∑

m=0

mP m
l (sin θ)

sin θ
(Hlm(r) cos (mφ) − Glm(r) sin (mφ)) , (3.25)

where Glm(r) = Clm(r)/r, Hlm(r) = Dlm(r)/r, Elm(r) = dClm(r)/dr, and
Flm = dDlm(r)/dr.

For the code implementation, the double loop over the spherical harmon-
ics terms is truncated at l 6 6. The orthogonality of the Legendre functions
ensures (1) good convergence properties for the expansion (assuming physi-
cally inspired initial boundary conditions, i.e. finite mass and density) and
(2) that there is no mixing between different terms in the expansion.

The density is computed by assigning a particle to the two nearest points
in the radial grid with a linear mass assignment kernel, while the angular
dependence is treated exactly by formally introducing a delta function in θ
and φ.

In fact, to evaluate Alm(ri) the two integrals in Equation (3.22) are trans-
formed in a sum over the particles belonging to the two radial cells closest
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r i+1

∆r i−1 ∆r i

irri−1 r(j)

Figure 3.4: Assigning the mass to the grid. The particle at r(j), with mass
m(j), contributes to the density at the grid points ri−1 and ri with weight,
respectively, m(j) (1 − (r(j) − ri−1)/∆ri−1), and m(j) (r(j) − ri−1)/∆ri−1.

to ri:

Alm(ri) =
(2l + 1)(2 − δ(m))

4π

(l − m)!

(l + m)!

∑

j∈{I}

sin θ(j)P
m
l (cos θ(j)) cos (mφ(j))ε(r(j), ri),

(3.26)
where the index j runs over the particles, and the set {I} is defined by the
particles such that ri − ∆ri−1/2 < r(j) < ri + ∆ri/2; ε(r(j), ri) is a weight
function defined by the mass assignment kernel. If r(j) > ri:

ε(r(j), ri) = 1 − r(j) − ri

∆ri
, (3.27)

or else, if r(j) < ri:

ε(r(j), ri) =
r(j) − ri−1

∆ri−1

. (3.28)

The force is then assigned from the grid points to the particles using the
same kernel ε(r(j), ri).

We note that the linear kernel to assign the mass to the grid (and the
force on the particles) still introduces a very small systematic radial force,
because of the linear interpolation on the radial grid. We partially correct for
this small error by computing and subtracting the self force of the particle on
itself. However the use of the interpolation for the force assignment has an
intrinsic limitation since the computed force is not exactly the gradient of the
potential. Some consequences on the conservation of energy are discussed in
Sect. 3.4.

As shown in Sect. 3.4.2, the numerical scheme does not introduce any
unphysical preferred spatial direction for the N-body system.

The expansions require special attention near the z axis, because some
factors in Equations (3.23) and (3.25) lead, if evaluated numerically, to indef-
inite expressions of the form 0/0. In reality, only the terms with m = 0 and
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m = 1 remain. We have studied the numerical behavior near the z axis in
the limits θ → 0 and θ → π. The actual computation of the force is currently
done by introducing a cutoff in the θ angle near the axis. The threshold value
has been chosen to ensure that the relative error introduced in the force is
less than 10−5.

The radial integration required in Equations (3.20-3.21) to obtain C1lm(ri)
and C2lm(ri) is carried out by assuming Alm(r) to be constant over a cell so
that it can be taken out of the integral, which is then computed analytically
for each cell.

3.3.4 Performance

From the structure of the CGS code, the computational time per time step
is expected to scale linearly with respect to the number of the particles
used. Another important parameter is the number of terms in the spherical
harmonic expansion, for which the scaling of the computational time is linear
for some subroutines, while others require resources that are approximately
independent of it. Thus the global dependence from the number of spherical
harmonics used is somewhat less than linear, as can be seen from Table 3.1.
The number of grid points has little effect on the total CPU time. We have
empirically checked the expected dependence by running several simulations
summarized in Table 3.1. These offer a benchmark for the performance of
the code.

In order to study the work load in the different subroutines we have
performed a profiling of the code by using the standard Linux package gprof.
The results are summarized in Table 3.2 for a typical run with spherical
harmonics terms up to l = 4 that follows for 103 steps the evolution of
105 particles using a radial grid with 102 points and calling the diagnostic
subroutines every 102 steps. Most of the computational time is spent to
compute the potential (≈ 41%) and the acceleration of the particles (≈ 52%).
Only 4% of the CPU time is used to advance the particles with the leap-frog
scheme, while the diagnostic performed on the flight requires around 2% of
the computational resources. The remaining time is spent by initialization
subroutines, in particular for the computation of the small self-force and
self-potential energy induced by each particle on itself corrected during the
run.
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Table 3.1: Typical performance of the CGS code with different parameters.
l is the highest order of spherical harmonics used, Ng is the number of grid
points, Nsteps the number of time steps, N the number of particles, trun is
the CPU time in seconds required to complete the simulation as measured
with gprof on a Pentium4 1.7 GHz workstation. The diagnostic subroutines
were called every 102 time steps.

l Ng Nstep N trun

0 100 103 105 181
2 100 103 105 353
4 100 103 105 607
6 100 103 105 970
4 100 103 5 × 104 311
4 100 103 2.5 × 104 158
4 60 103 2.5 × 104 147
4 150 103 2.5 × 104 190
4 120 103 8 × 105 4869

3.4 Tests

The code has been tested extensively in order to verify its accuracy in con-
serving the global integrals (total energy, total angular and linear momen-
tum) for equilibrium and non-equilibrium initial conditions, and the single-
particle energy and angular momentum for runs starting from spherically
symmetric equilibrium models (Plummer and some stable f (ν) models).

3.4.1 Conservation of the global integrals

We studied first the code performance by simulating a Plummer distribution,
which is known to be stable analytically. As expected, there is no evolution
for the fractional mass radii and the code conserves the central density ac-
curately.

The typical relative energy conservation for a run with 105 particles ini-
tialised with a Plummer model is of the order of 10−5 per dynamical time.
The angular momentum is also conserved well, at the same relative level of
the energy; to appreciate the accuracy in the relative angular momentum con-
servation we recall that since we are considering non rotating configurations,
the system possesses a very small initial angular momentum λ ≈ 10−3−10−4

(where λ = J |E|1/2/(GM5/2)).
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Table 3.2: Profiling for a simulation that followed the evolution of 105 par-
ticles for 103 steps using l 6 4, a radial grid with 102 points and calling
the diagnostic subroutines every 102 steps. The first column gives the frac-
tional time spent in the subroutine identified by its Name (last column), the
second column the cumulative time tcum, the third the time t spent in that
subroutine, and the fourth column the number of calls to that subroutine.
Most of the time is used to solve the Poisson equation and to compute the
acceleration, including the evaluation of the Legendre polynomials for each
particle (plg acc and plg pot).

%t tcum t Ncalls Name
38.86 235.70 235.70 1000 accel (self)
33.48 438.79 203.09 1002 poisson (self)
13.51 520.74 81.95 1.013 × 108 plg acc
6.98 563.10 42.36 1.002 × 108 plg pot
3.87 586.59 23.49 108 advpart
1.55 596.01 9.42 12 diagnostic
1.18 603.17 7.16 1 sfer
0.36 605.34 2.17 1003 p2g
0.05 605.63 0.29 1673843 ran2
0.04 605.89 0.26 12 veldis
0.03 606.09 0.20 12 veldisbound
0.03 606.29 0.20 1 init vel
0.02 606.39 0.10 1 plummer
0.01 606.48 0.09 12 densbound
0.01 606.56 0.08 13 dens
0.00 606.58 0.02 1 rotate

We note that in Fig. 3.5 the relative energy errors (left panel) show a
pattern that has variations at a higher frequency than that of the errors of
the relative angular momentum (right panel). The frequency of the noise is
approximately of the order of the mean cell-crossing frequency, so it may be
associated to the Poisson noise of the occupation number of the radial grid
(this is in fact the major source of errors in the total energy for stationary
configurations). The leading source of errors in the angular momentum con-
servation seems to be, on the other side, related to errors in the integration
of individual orbits, and thus the frequency of the variations in J is of the
order of the dynamical frequency (i.e. ≈ 1/td).
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The code also conserves the linear momentum well (see Fig. 3.11). In fact,
the velocity of the centre of mass presents usually a pattern compatible with
random walk. However, in particular configurations, such as in simulations
of violent collapse, noise fluctuations or fast travelling particles in the halo
can move the centre of mass of the bound system outside the first radial
cell. In this case the code may lose accuracy, because the centre of mass of
the bound particles and the centre for the spherical harmonic expansion no
longer coincide, and only a finite number of spherical harmonics is considered.
To avoid this problem, it is sufficient to re-centre the centre of mass of the
bound system at the origin of the coordinate system a few times every td.

We then checked the general conservation performance for a run initialised
with a (1; 5) f (ν) model (see Fig. 3.7). This choice seems to be particularly
interesting, not only because it presents a significant global content of ki-
netic energy in the radial degree of freedom (2Kr/KT ≈ 1.6), although still
in the stable range of the sequence, but also because such model is more
concentrated than the Plummer model.

Extremely concentrated models are harder to simulate. As an example,
we report some results obtained in simulating a f (ν) (1/2; 9.4) model, which is
≈ 3× 103 times more concentrated as the (1; 5) model. The density contrast
is ρ(0)/ρ(rM) ≈ 1.15×105. Here the total energy conservation is still around
10−5 per dynamical time for 106 particles (see Fig. 3.10) and there are no
signs of evolution, e.g. the radii containing 50 and 100 particles (in fraction
of total mass 5×10−5 and 10−4) are only fluctuating within the Poisson noise.

After some tests we concluded that the optimal choice of grid size appears
to be the one that ensures approximately at least 103 particles in every radial
cell, except at the centre, where smaller numbers can be tolerated in order
to increase the spatial resolution.

The time step does not play an important role in the conservation of
the global integrals, as long as there are at least a few hundreds steps per
dynamical time.

The overall results are thus successful, except for a remaining open issue,
namely the effects induced by the interpolation over the radial grid, which
depends on the radial positions and thus on the properties of the mass distri-
bution. In fact there is no guarantee that the interpolated force be exactly the
gradient of the potential. While this has negligible consequences in station-
ary configurations, it may lead to undesired effects on energy conservation in
strongly non-stationary conditions, such as the simulations of violent collapse
starting with 2K/|W | . 0.05. In fact, under those conditions there can be
a relative error in energy conservation up to 10−2 between the initial time
and the time at which the virial equilibrium has been reached. This error is
almost independent from the number of particles used. After reaching equi-
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librium the typical relative error in energy returns to be of the order of 10−5

over one dynamical time for 105 particles.

Figure 3.5: Total energy (left panel) and total angular momentum conser-
vation (right panel) for a simulated Plummer model with 2 × 104 particles
using the CGS code. The time is given in units of dynamical time td. Note
that the absolute value of the total angular momentum associated with the
initial conditions is rather low, the dimensionless rotation parameter λ is
≈ 2 × 10−3.

3.4.2 Rotational invariance

We have tested the rotational invariance of the code by performing some sim-
ulations, both with non zero and nearly zero angular momentum, which we
have then repeated after rotating the initial conditions by an arbitrary angle.
The evolution of the system appears to be not influenced by the existence of
any spurious preferred spatial direction. The macroscopic properties of the
simulation with rotated initial conditions are the same as the original one.

Furthermore, for the inertia tensor Tij =
∑N

k=1 m(k)x(k)ix(k)j , the oper-
ations of rotation and time evolution commute. For example, this can be
seen in Fig. 3.12 for a simulation where the system loses the initial spherical
symmetry as the result of the radial orbit instability.
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Figure 3.6: Total energy (left panel) and total angular momentum conser-
vation (right panel) for a simulated Plummer model with 2 × 105 particles
using the CGS code. Higher resolution version of Fig. 3.5; here λ ≈ 4×10−4.

Figure 3.7: Total energy (left panel) and total angular momentum conser-
vation (right panel) for a simulated stable (1; 5) f (ν) model with 2 × 105

particles using the CGS code. Here λ ≈ 4 × 10−4.

3.4.3 Diffusion in the (E, J) phase space

To obtain a picture of the behavior of the code with respect to the phase
space, we checked the conservation of single-particle energy and angular mo-
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Figure 3.8: Total energy (left panel) and total angular momentum conserva-
tion (right panel) for a simulated (1/2; 3) f (ν) model with 2 × 104 particles
using the CGS code. The time is given in units of dynamical time td. Note
that the absolute value of the total angular momentum associated with the
initial conditions is very low, as implies a dimensionless rotation parameter
λ ≈ 10−4. As discussed in Sect. 4.2 this model is strongly affected by the
radial orbit instability and in a short time (of order td) the excess of ra-
dial kinetic energy is transferred to the tangential degree of freedom with a
consequent evolution toward a flattened configuration.

mentum. In fact, for a spherical, time-independent potential, these quantities
should be conserved exactly. In reality, finite accuracy and the finite number
of particles will generate a diffusion in phase space.

For a Plummer model with 4× 105 particles after 5 dynamical times the
mean square variation of single-particle energy is within 4 × 10−3 times the
maximum binding energy of the system; this number increases to 8 × 10−3

after 20 td. Similar numbers hold for the angular momentum: the mean
square variation for each component is of the order of 3 × 10−3 times the
value of the maximum single particle angular momentum after 5 td and 10−2

after 20 td (see also the discussion in Sect. 3.5 and Figs. 3.13-3.14).

Also for a (1, 5) f (ν) model the conservations at the level of phase space
are very good (see Fig. 3.15).
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Figure 3.9: Total energy (left panel) and total angular momentum conserva-
tion (right panel) for a simulated (1/2; 3) f (ν) model with 2 × 105 particles
using the CGS code. Higher resolution version of Fig. 3.5; here λ ≈ 1.5×10−4.

Figure 3.10: Total energy conservation (left panel) and selected Lagrangian
radii (right panel; enclosing a fractional mass equal to 10−4; 6.25× 10−3; 5×
10−2; 0.5; 0.7; 0.95; 0.98) for a simulated stable (1/2; 9.4) f (ν) model with 106

particles using the CGS code.

3.5 Comparison with SCFM (Hernquist & Os-

triker 1992)

In the Self Consistent Field Method (Hernquist & Ostriker 1992), the expan-
sion of the density and the potential in a suitable basis is complete, and thus
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Figure 3.11: Total linear momentum conservation for stationary (left panel)
and non stationary (right panel) configurations with with 2 × 105 particles
using the CGS code: position of the center of mass divided by the size of
the first radial grid for a simulated Plummer model (left panel) and for a
simulated unstable (1/2; 3) f (ν) model (right panel). The size of the first
radial grid is 0.03 rM for the Plummer model and 0.01 rM for the f (ν) model
(more concentrated and thus with a smaller radius for the first cell). The
time is given in units of dynamical time td.

a radial basis in terms of a set of density-potential functions is chosen to be
combined with the spherical harmonics.

In the SCFM approach the choice of radial functions able to capture
the large scale structure of the system to be simulated is of fundamental
importance. In fact, even if in principle the expansion converges for every
density profile provided that the basis for the expansion is complete, from the
numerical point of view it is important to be able to truncate the expansion
at the lowest possible order. To construct a suitable complete set of radial
functions Hernquist & Ostriker (1992) resort to a density potential pair that
has the form:

ρ(r) =
M

2π

a

r

1

(r + a)3
, (3.29)

Φ(r) = −G
M

r + a
, (3.30)

as zero order member. The density profile in Equation (3.29) gives a good fit
to the R1/4 law if projected, and thus is a good choice for simulations aimed
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-------------------------------------------------------------

Tij Ry^{-1} TimeEv Ry (Tij)

Time = 0

0.199056 0.000592 0.000093 0.199056 0.000592 0.000093

0.000592 0.199844 0.000591 0.000592 0.199844 0.000591

0.000093 0.000591 0.199073 0.000093 0.000591 0.199073

Time = 15 td

0.168254 0.025679 -0.029320 0.168383 0.025798 -0.029316

0.025679 0.214134 0.013725 0.025798 0.214202 0.013792

-0.029320 0.013725 0.209690 -0.029316 0.013792 0.209763

Time = 30 td

0.174024 0.026087 -0.025396 0.174830 0.025598 -0.025499

0.026087 0.215086 0.012943 0.025598 0.213986 0.013301

-0.025396 0.012943 0.215150 -0.025499 0.013301 0.212986

---------------------------------------------------------------

Figure 3.12: Evolution of the inertia tensor Tij for a simulation starting from
unstable initial conditions (the f (ν) model (3/4; 3)) with 8×104 particles (left
set of three columns). To test the rotational invariance of the code we re-run
the simulation with the same initial conditions rotated by π/2 along the y
axis. Then we rotate by −π/2 along the same axis the resulting inertia tensor
(right column), which we compare to the one from the original simulation.
The agreement is very good, better than 99% after 30 dynamical times.
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at studying the dynamics of elliptical galaxies (see Hernquist 1990).

The associated basis is then defined as follows:

ρnlm(~r) =
Knl

2π

rl

r(1 + r)2l+3
Wnl(ξ)

√
4πYlm(θ, φ), (3.31)

Φnlm(~r) = − rl

(1 + r)2l+1
Wnl(ξ)

√
4πYlm(θ, φ), (3.32)

where Knl are normalization constants and the functions Wnl(ξ) give the
higher order elements of the basis, with ξ = ξ(r). The precise form of
the functions Wnl(ξ(r)) is given by Hernquist & Ostriker (1992). Here it is
sufficient to remember that the potential and the density can be eventually
expressed as:

ρ(r, θ, φ) =
∞
∑

l=0

∞
∑

m=0

P m
l (cosθ) [Alm(r)cos(mφ) + Blm(r)sin(mφ)] ,(3.33)

Φ(r, θ, φ) =

∞
∑

l=0

∞
∑

m=0

P m
l (cosθ) [Clm(r)cos(mφ) + Dlm(r)sin(mφ)] ,(3.34)

which are similar to the Equations (3.13-3.14) that we have derived for the
CGS code, with the difference that here the coefficients Alm, Blm, Clm and
Dlm are computed using the expansion in Equations (3.31-3.32).

Apart from this point, the structure of the self-consistent field method is
essentially the same as in our code, since it employs a global time step and
particles are advanced with a leap-frog scheme.

In our approach we have traded some accuracy (the SCFM is claimed
to conserve exactly the total energy and the total angular momentum) for
a greater flexibility in the range of density profiles that the code is able to
handle efficiently.

To assess the performance of our code we have run some comparison sim-
ulations using both the CGS code and the SCFM (within the NEMO distri-
bution; Teuben 1995) with the aim to quantify in particular the relaxation
effects. In practice we have replicated the experiments done by Hernquist
& Ostriker (1992) (see Sect. 5.3 of their paper), which measure the scatter
in the single particle energy and angular momenta for stable configurations.
Some representative results are reported in the set of Figs. 3.13-3.14. The
measured diffusion in phase space is lower for the SCFM, but only slightly:
the relative difference between the two codes is of the order 10%.
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Figure 3.13: Changes the energy of individual particles in a Plummer model
between 4 and 8 td as a function of the single-particle energy per unit mass
at time 4 td. Energy differences are measured relative to the energy value at
t = 4 td. A total of 2×104 particles were used, with a time step ∆t = 0.002 td.
The left panel refers to a simulation performed with the CGS code, while
the right one with the SCFM method by Hernquist & Ostriker (1992). The
single particle energy diffusion in the two codes is at the same level: the
measured mean absolute deviation 〈|∆E/E|〉 is 0.026 for the CGS code and
0.022 for the SCFM.

3.6 Comparison with GyrFalcON (Dehnen 2000)

As a further test, we have also run a few test simulations by comparing, under
identical conditions, the performance of our code to that of the fast tree code
GyrFalcON (Dehnen 2000, 2002), within the NEMO distribution (Teuben
1995). In such tests, we adopt the following procedure. We first generate the
initial conditions in the physical units used by our code (see Sect. 6.2) and we
run the simulation. We then convert the initial conditions to the natural units
defined by Heggie & Mathieu (1986) and used in Dehnen’s code. Finally,
we run the simulation within the NEMO environment. The quality of the
integration is checked with the standard NEMO tools of analysis. At the end
of the simulation, a “snapshot” of the system is exported and converted back
to our units, in such a way that it can be processed by the same diagnostics
used for the particle-mesh code.

The initial conditions for these runs have been chosen in order to be
representative of the sample investigated for the study of the formation of
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Figure 3.14: Changes in the x component of the angular momentum of in-
dividual particles in a Plummer model between 4 and 8 td as a function of
the energy per unit mass at time 4 td. Angular momentum differences are
measured relative to t = 4 td. A total of 2 × 104 particles were used, with
a time step ∆t = 0.002 td. The left panel refers to a simulation performed
with the CGS code, while the right one with the SCFM method by Hern-
quist & Ostriker (1992). The single particle angular momentum diffusion in
the two codes is at the same level: the measured mean absolute deviation
〈|∆Jx|〉/〈|Jx|〉 is 0.080 for the CGS code and 0.076 for the SCFM.

partially relaxed stellar systems via collisionless collapse; they are described
in Table 6.1 (C4.1 and C4.3 entries), with the properties of the final equilib-
rium state listed in Table 6.3.

For the runs with Dehnen’s tree code we adopted the following choice
of integration parameters: tolerance parameter θ = 0.5 (standard choice
0.6) to improve accuracy in the calculation of forces; softening length ε =
0.01 (in natural units; standard choice 0.05) to increase central resolution;
minimum allowed time step 1/28 (i.e. ≈ 724 steps per dynamical time). With
this choice of integration parameters, the energy and angular momentum
conservation is very good: in one dynamical time td, the relative changes are
∆Etot/Etot < 10−5 and ∆Jtot/Jtot < 10−4.

The required CPU time to complete the simulation with GyrFalcON is
only marginally higher than with our code, which, however, has not yet been
optimized for speed.

As desired, for these runs we find a substantial similarity in the proper-
ties of the end-products obtained by the two different methods of integration
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Figure 3.15: Changes in the binding energy (left panel) and in the x com-
ponent of angular momentum of individual particles in a (1; 5) f (ν) model
between 2 and 6 td as a function of the binding energy per unit mass at time
2 td. A total of 2 × 105 particles were used for the simulation with our CGS
code, with a time step ∆t = 0.002 td. The measured mean absolute deviation
are 〈|∆E/E|〉 = 0.012 and 〈|∆Jx|〉/〈|Jx|〉 = 0.047.

(see Fig. 3.16). To be sure, small differences naturally arise, as expected.
The main systematic difference is in the degree of pressure anisotropy char-
acterizing the end-products of the simulations. In fact, the output from the
tree code is slightly more isotropic: the final global anisotropy, measured
by 2Kr/KT , is up to 7% lower, with a slight outward shift of the pressure
anisotropy profile α(r), corresponding to a more efficient core relaxation.

3.7 Diagnostics

N-body simulations are important tools to investigate the dynamical evolution
of gravitational structures and can provide a unique insight in the detailed
phase space structure of self-gravitating systems. In fact, in the observations
of these systems, photometric and spectroscopic data points sample only
limited spatial regions with finite accuracy, projected on the plane of sky.

The numerical simulations thus play the role of laboratory experiments,
providing extremely detailed information (in principle the positions and the
velocities of all the particles at every time step). These quantities may be
directly stored and analysed later, or the data-processing may be performed



72 CHAPTER 3. SIMULATING STELLAR SYSTEMS

-1 0 1

0

0.5

1

1.5

2

-1 0 1
-6

-4

-2

0

2

4

-80 -60 -40 -20 0
0

0.01

0.02

0.03

0.04

0.05

-1 0 1
-0.2

-0.1

0

0.1

0.2

Figure 3.16: Comparison between our code and GyrFalcON (Dehnen 2000)
for a collisionless collapse simulation (run C4.1 in Chapter 6). Final density
(upper left) and pressure anisotropy (bottom left) profiles, and single-particle
energy distribution (bottom right) for a run starting from 105 particles in 10
cold clumps with u = 0.15 (see Tables 6.1 and 6.3 for further details about the
simulation); here the solid lines give the results obtained with GyrFalcON,
while the crosses refer to our code. In the upper right panel we plot the
differences in the density profile ∆ρ = 2(ρfalcon − ρCGS)/(ρfalcon + ρCGS)
(crosses) and in the pressure anisotropy profile ∆α = αfalcon − αCGS (solid
line).
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in real-time, i.e. while the simulation is running, to reduce the amount of
data stored.

In the CGS code an extensive set of processed diagnostic quantities is
provided; in addition, we save a complete snapshot of the N-body system
every few dynamical times. This snapshot can be used either as a restart file
or to further analyse the simulation.
As diagnostic our code provides the following quantities in fuction of time:

• The total energy Etot, the virial ratio 2K/|W |, the total angular mo-
mentum |Jtot| in the standard output file fort.20 ;

• The single components of the angular momentum vector Jx, Jy, Jz and
the mean orbital ellipticity 〈e〉 = (1/N)

∑

i=1,N 2E(i)J
2
(i)/(Φ2(r(i))r

2
(i))

in the standard output file fort.19 ;

• The density profile ρ(r), estimated with the radial grid used to solve
the Poisson equation in the standard output file fort.18 ;

• The ellipticity ratios κ = b/a and η = c/a, where c 6 b 6 a and a, b, c
are the semiaxes of the system estimated from the inertia tensor, in the
standard output file fort.17 ;

• The complete inertia tensor in the standard output file fort.16 ;

• The radial (Kr) and tangential (KT ) kinetic energy and their ratio
2Kr/KT in the standard output file fort.14 ;

• The pressure anisotropy profile α(r), estimated with the radial grid
used to solve the Poisson equation in the standard output file fort.13 ;

• Selected Lagrangian radii in the standard output files fort.11 and fort.12 ;

• The single-particle energy distribution N(E) (normalised as Mtot =
∫

N(E)dE) in the standard output file fort.22. This quantity is com-
puted using a binning method over a grid in E;

• The single-particle energy angular momentum distribution N(E, J)
(normalised as Mtot =

∫

N(E, J2)dEdJ2) in the standard output file
fort.23. This quantity is computed using a binning method over a grid
in (E, J2);

In addition, a summary with the most important quantities selected from
the list above is provided in the standard output file fort.2.



74 CHAPTER 3. SIMULATING STELLAR SYSTEMS

3.8 Reconstructing the underlying distribu-

tion function from the products of N-body

simulations

In a simulation of a collisionless N-body system a fundamental diagnostic
quantity is the distribution function f(~x; ~w, t) (see Equation 3.1). If f is
known, all the mean properties (e.g. density and anisotropy profile, line
of sight velocity dispersion profiles) of the N-body system can be readily
computed.

A direct measure of f in the six-dimensional phase space is not easy,
although recently there is a growing interest on this topic in the field of
cosmological simulations (see, e.g. Ascasibar & Binney 2004; Williams et al.
2005).

So, instead of working in the six-dimensional (~x, ~w) space, we introduce
the assumptions of spherical simmetry and approximate dynamical equilib-
rium with the goal of simplifying the measure of the phase space density. In
this case, if the system is also isotropic, the distribution function will depend
only from the single particle energy E = w2/2+Φ(r), and thus the complex-
ity of the problem has been greatly reduced since we have to measure the
one dimensional phase space density N(E), normalised as

Mtot =

∫

N(E)dE. (3.35)

The distribution function f(E) (with Mtot =
∫

f(E)d3~xd3 ~w) will be obtained
from N(E) by considering the Jacobian factor associated to the transforma-
tion from E to (~x, ~w) (see Equation 3.46).

Below we illustrate our method, starting from the reconstruction of the
potential well under the assumption of spherical symmetry.

For the main purpose of this Thesis, i.e. for the comparison between
the f (ν) family of models and the end-products of simulations starting from
cold initial conditions, we have to dismiss the assumption of isotropy. Thus
we consider (see Sect. 6.6.4) the bi-dimensional (E, J 2) phase space. In
this case the measure of N(E, J2) is a straightforward generalisation of the
isotropic case, but we have not yet developed a reliable method to com-
pute the conversion factor Ωr from N(E, J2) to f(E, J2) (i.e., f(E, J2) =
N(E, J2)/Ωr(E, J2); see Sect. 3.8.3). In Sect. 6.6.4 we will thus compare the
end-products of the simulations and the f (ν) models at the level of N(E, J2)
rather than f(E, J2).
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3.8.1 Potential well reconstruction

To define the single particle energy E = w2/2+Φ(r) we need to construct an
estimator for the potential Φ(r). In principle, to compute the potential one
may resort to a subroutine borrowed from a N-body code, such as our CGS
code. This way may be natural when the single particle energy E is defined
within a simulation, and thus Φ(r) has been already computed. However
the so obtained potential depends from the specific N-body code used and in
general is not spherically symmetric.

Thus, if we are interested in the estimation of the distribution function
under the assumption of spherical symmetry, we find more appropriate to
define a consistent method to compute the potential Φ(r). The particles are
thus treated as infinitely thin spherical shells, except in the central regions
where a softening kernel is introduced to avoid unbound errors near the
centre.

In a continuum system with a spherically symmetric mass distribution
M(r), where the symbol indicates the mass M enclosed in a sphere of radius
r, the potential can be expressed as:

Φ(r) = −G
M(r)

r
− G

∫ ∞

r

dM(r′)

r′
, (3.36)

which becomes, in terms of a discrete system made of infinitely thin shells,
each of mass m(j):

Φ(r) = −G
M(r)

r
− G

∑

j∈{j|r(j)>r}

m(j)

r(j)

. (3.37)

In Equation (3.37) the mass M(r) within the radius r contributes to the
potential as if it were all concentrated in the centre, while the outer shells
contribute with their own radius r(j). The potential obtained from Equa-
tion (3.37) is thus constant within the innermost shell and “piecewise Kepler”
between two shells.

By introduction of the quantity s(j), defined as:

s(j) = Max(r, r(j)), (3.38)

Equation (3.37) becomes:

Φ(r) = −G

N
∑

j=1

m(j)/s(j). (3.39)
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A softening kernel can thus be naturally introduced in terms of s(j) in Equa-
tion (3.39). If we consider the K0 kernel (Dehnen 2001, App. B), acting
over a softening length ε:

K0(r) =
1

ε

{

1 +
1

2

[

1 −
(r

ε

)2
]

+
21

16

[

1 −
(r

ε

)2
]2
}

If r < ε

K0(r) =
1

r
If r > ε, (3.40)

then we can rewrite Equation (3.39) as:

Φ(r) = −G

N
∑

j=1

m(j)K0(s(j)). (3.41)

The adopted kernel has the advantage of being unbiased with respect
to the estimation of the central potential for a sphere with constant den-
sity (Dehnen 2001). Also, since the softening has a compact support, the
potential calculation is exact (within the shell approximation) outside the
softening radius.

To be sure the kernel introduces a small bias in the values of the potential
evaluated between the centre and ε; Φ(r) is lower than the “true” value of
the potential for a spherical mass distribution of constant density if r < ε.
To estimate the bias introduced we can consider the potential of a uniform
sphere of unit radius equal to the kernel length ε. The unsoftened potential
within the sphere is:

Φ(r) = −1

2
+

r2

6
, (3.42)

while Φ(r) evaluated through the K0 kernel gives:

Φ(r) = −1

2
+

15r3

16
− 5r5

8
+

3r7

16
− r3

3

[

1 +
1

2

(

1 − r2
)

+
21

16

(

1 − r2
)2
]

. (3.43)

The two curves are plotted in Fig. 3.17.

From Equations (3.42-3.43), we can see that, as an order of magnitude,
the relative error in the potential introduced within the region ε is smaller
than the fractional mass contained in the smoothing region with respect to
the total mass of the system. Since the softening length ε is usually chosen
to be of the order of the mean inter-particle distance in the core, the bias is
negligible in most situations.
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Figure 3.17: True (upper curve) and softened (lower curve) potential within
a homogeneous sphere of unit radius. The softening length in the figure is
ε = 1.

3.8.2 Estimating N(E): data binning

Having computed the spherically symmetric potential, we can readily obtain
the single particle energy E = w2/2 + Φ(r) and then recover a phase space
density N(E), normalised so that Mtot =

∫

N(E)dE.

A simple way to compute N(E) is to order the particles with respect to
their energy, and then bin them. For each bin the density in energy space is
given by the sum of the masses of the bin members, divided by the difference
between the maximum and minimum energy in the bin. A natural binning
size, in order to reduce the noise, is given by the nearest integer to the square
root of the number of particles of the system.

This binning method is the standard choice for computing N(E) and
N(E, J2) (normalized as Mtot =

∫

N(E, J2)dEdJ2) in our code.

We stress at this point that, while N(E) can be measured in every dy-
namical condition of the N-body system under consideration, the step pre-
sented in the next subsection, i.e. the transformation from N(E) to f(E) is
meaningful only for spherically symmetric isotropic configurations in quasi
dynamical equilibrium.

3.8.3 From N(E) to f(E)

Finally we have to express our measured N(E) in term of the distribution
function f(E) for the system. The relation between N(E) and f(E) is given
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by the following integration:

N(E) =

∫

δ(E − E ′)f(E ′)d~x′d~w′

= 16π2

∫ Φ−1(E)

0

√

2[E − Φ(r)]f(E)r2dr, (3.44)

where Φ−1(E) is the radius rmax defined implicitly by E = Φ(rmax). We
have:

f(E) =
N(E)

16π2
∫ Φ−1(E)

0

√

2[E − Φ(r)]r2dr
, (3.45)

and so we need to compute the conversion factor:

Cr(E) = 16π2

∫ Φ−1(E)

0

√

2(E − Φ(r))r2dr, (3.46)

which is proportional to the mean radial frequency of an orbit with energy
E in the potential Φ. In fact:

Cr(E) =

∫ J2
max(E)

0

Ωr(E, J2)dJ2, (3.47)

where Jmax(E) is the maximum angular momentum for a particle with energy
E and Ωr(E, J2) is the classical formula for the radial frequency of orbits with
a given energy and angular momentum:

Ωr(E, J2) = 4π2

∫ r2

r1

dr
√

2[E − Φ(r)] − J2/r2
. (3.48)

In passing we note that Ωr(E, J2) is also the conversion factor between
N(E, J2) and f(E, J2):

f(E, J2) =
N(E, J2)

Ωr(E, J2)
. (3.49)

In Fig. 3.18 we present a first application of this method to measure the
distribution function f(E). This is referred to a simulation of a collisional
stellar systems, i.e. a globular cluster, and thus this example is by itself
outside the scope of this Thesis, which is focused on collisionless systems.
[For further details on the simulation from which the example has been taken,
see Hut et al. (2005)].
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Figure 3.18: Example of a measurement of the distribution function f(E)
using the method presented in this Section. We note that the simulation
from which f(E) is measured refers to the evolution of a Plummer model
with 8192 stars and a population of 10% of primordial binaries (for further
details see Hut et al. 2005) and is not related to the collisionless simulations
discussed in this Thesis. The only purpose here is to illustrate the method
to measure f(E). In the figures the distribution function per unit mass is
measured, from left to right, at times t = 0; 10; 50; 100 trM (0), where trM (0)

is the initial half mass relaxation time (trM (0) = 0.138Nr
3/2
M (0)/ ln (0.11N)).

The left panel reports a logarithmic scale for E, so that the initial polytropic
profile with n = 5 is evident. Instead the right panel has a linear scale, so
that a straight line in this graph represents an isothermal profile. Note the
progressive expansion (f(E) is shifted to the right) of the star cluster.
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3.9 Initialisation from a given distribution func-

tion

Initialising an N-body simulation according to a given distribution function
f(~x, ~w) requires to sample random points from a six dimensional probability
distribution.

Usually the available random number generators provide (pseudo) ran-
dom numbers uniformly distributed in the range [0, 1].

Given a generic distribution function p(~x), there are basically two meth-
ods for sampling points from it that require only the availability of a standard
uniform random number generator: (1) exact inversion (and composition)
methods; (2) hit/miss method (Press et al. 1986; see also Succi 2003 Chap-
ter 5 for a detailed discussion).

The exact inversion method works only in one dimension since it is based
on the knowledge of the inverse function of the primitive of the probability
distribution P−1(x), where P is defined as:

P (x) =

∫ x

−∞

p(y)dy. (3.50)

The exact inversion to generate a random number rx from p(x) simply reads:

rx = P−1(ry), (3.51)

where ry is a random number drawn from a uniform distribution in [0, 1]. A
geometrical representation of the concept behind exact inversion is given in
Fig. 3.19. This method is especially useful to sample from exponential or
Gaussian (via the Box-Muller transformation) distribution functions.

When dealing with multi-dimensional distributions, usually the second
method (hit/miss) is the only one viable (except when the multi-dimensional
distribution is the product of independent one-dimensional distributions).
The hit/miss method was first proposed by von Neumann. The idea, illus-
trated for simplicity in one dimension (see Fig. 3.20), is to draw a pair of
uniform random numbers (r2, r1) and to accept/reject them depending on
whether the corresponding point falls or not within the graph of the distri-
bution p(x). The generalisation for N dimensional distribution functions is
straightforward: N +1 uniform random numbers are drawn and are accepted
if the point thus identified is below the graph of p(~x).

At variance with the exact inversion, the hit/miss method may suffer from
efficiency problems when p(~x) is strongly peaked. In these cases analytical
transformations to bias the uniform trial extractions of random numbers may
be considered (this method is called “importance sampling” see, e.g. Succi
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p(x)

P(x)

r1

r2

Figure 3.19: Exact inversion from a distribution p(x). The uniform random
number r1 is mapped into r2, distributed according to p(x).

2003, Chapter 5). The method does not work, if the distribution function p
is singular.

The initialisation of N-body snapshots from a given spherically symmet-
ric distribution function can be performed by considering that the position
initialisation depends only on the integrated mass profile and that exact in-
version for sampling the radius of each particle can be naturally performed.
Once the radius has been obtained, the angular coordinates can be sampled
(uniform sampling in φ and in cos(θ)). The velocities can then be obtained
by the hit/miss method applied to the distribution function f(~x, ~w), where ~x
is known. The dimension of the sampling space is reduced to three (and often
even more by considering additional symmetries of the distribution function,
such as in the case f(E, J)) and efficiency problems are typically not se-
vere. The sampling of most of the distribution functions used in this Thesis
has been performed with this method. One important exception is given
by low concentration polytropic spheres, that present a singular probability
distribution for the velocity (see below).

3.9.1 Polytropic spheres

These isotropic models have a distribution function of the kind (e.g., see
Binney & Tremaine 1987, Chapter 4)

f(E) = A(−E)n−3/2θ(−E), (3.52)



82 CHAPTER 3. SIMULATING STELLAR SYSTEMS

p(x)

r2

r3

r4

r1

Figure 3.20: Hit/miss sampling from a distribution p(x). The random num-
ber r2 is accepted, while r4 is rejected.

where A and n > 1/2 are free parameters and θ(x) is the Heavyside function
(θ(x) = 1 if x > 0 and θ(x) = 0 if x < 0).

In general the initialisation of simulations according to the distribution
function Equation (3.52) is straightforward: the positions are sampled by
inversion of the mass profile to obtain r and the direction of the vector ~r
is extracted at random. Then, the dimensionless velocity ŵ = w/

√

−2Φ(r)
has to be sampled from the distribution:

p(ŵ) = ŵ2(1 − ŵ2)n−3/2, (3.53)

that is a combination of the distribution function and the phase space factor
ŵ2. If n > 3/2 the hit/miss method works very well, otherwise p is unbound
and we must resort to exact inversion. The integral P =

∫

p (Equation 3.50)
of p (Equation 3.53) can be expressed in terms of a hypergeometric function
and then inverted numerically.

3.9.2 The f (ν) models

The integrated mass profile of the f (ν) models, obtained by solving the self-
consistent Poisson equation, is inverted numerically to sample the position
space. In principle, the models extend out to infinite radii. In practice, we
set a cut-off radius rcutoff ≈ 50rM , and rescale the mass profile in such a way
that M(rcutoff ) = Mtot = 1.
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Once the radius has been chosen, we use the hit/miss method for the
sampling of the two dimensional (wr; w⊥) velocity space, deciding at random
the remaining freedom in the direction of w⊥.

The combination of the adopted sampling methods ensures good accuracy,
as the properties of the generated synthetic galaxies are in agreement with the
theoretical expectations within 10−2 for typical numbers of particles N ≈ 105;
this limit is mainly due to the introduction of the cut-off. The method is also
reasonably efficient, since between 102 and 103 hit/miss attempts, depending
on the content of radial anisotropy, are required to generate the positions
and velocities of one particle.

3.10 Candidate collisionless equilibria gener-

ated by the Jeans equations

Sometimes it may be interesting to initialise stellar dynamical configurations
corresponding to systems with given density and pressure anisotropy profiles,
for those situations where we can not resort to equilibrium models expressed
in terms of distribution functions. As is well known, in general this problem
is not well-posed, because a given pair (ρ(r), α(r)) may even lack a physi-
cally acceptable underlying equilibrium distribution function. We proceed
by applying the necessary constraints of the Jeans equations and then ini-
tialise our simulations with a procedure described below, well aware that we
may actually miss the desired equilibrium conditions (see comment at the
beginning of Sect. 4.4).

The knowledge of the density profile immediately identifies the self-con-
sistent potential Φ(r). In addition, it defines the integrated mass profile,
from which the positions of the particles can be correctly initialised. In the
absence of an analytical distribution function, to complete the initialisation
of the N-body collisionless candidate equilibrium configuration, we then re-
sort to the Jeans equations to extract the information about the velocity
dispersion profile that would be required by the conditions of equilibrium.
In practice, for a non-rotating spherically symmetric system the relevant hy-
drostatic equilibrium equation can be written as:

d(ρ(r)σ2
r(r))

dr
+

α(r)

r
ρ(r)σ2

r(r) = −ρ(r)
dΦ(r)

dr
, (3.54)

where Φ represents the mean field gravitational potential (which can be taken
to be known for known ρ(r)) and σ2

r = 〈w2
r〉 the velocity dispersion in the ra-

dial direction. For assigned profiles (ρ(r), α(r)), under the natural boundary
condition given by
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ρ(∞)σ2
r(∞) = 0, (3.55)

the equation can be solved for σ2
r :

σ2
r(r) =

1

ρ(r)

∫ +∞

r

dr′
dΦ(r′)

dr′
ρ(r′) exp

{

∫ r′

r

α(r̃)

r̃
dr̃

}

. (3.56)

Thus we have obtained the velocity dispersion profiles consistent with the
given density and anisotropy profiles.

At this point, we initialise our N-body code by assuming that the velocity
dispersion profiles obtained above correspond, at least approximately, to a
truncated Gaussian distribution in velocity space (the truncation is imposed
by the requirement that only bound particles, i.e. particles with negative
energy, belong to the system). This assumption gives a reasonable description
of systems for which the velocity distribution is determined by physically
motivated distribution functions (e.g., for the stable f (ν) models); but, in
general, there is no guarantee that N-body systems initialised by this method
be in approximate dynamical equilibrium.

This method will be used in this Thesis to study the stability of config-
urations similar to those obtained as results of the evolution of cold initial
conditions. Thus the limitations of this approach are not severe, because
we are interested in a stability study. If we happen to obtain a configura-
tion with no significant signs of evolution, we are certain a posteriori that
a quasi-equilibrium state has indeed been produced. On the other hand,
even if the initialisation gives a configuration not in dynamical equilibrium,
but a nearby equilibrium configuration is approached on a very short time
scale (typically on the order of one dynamical time), then we may argue that
we have also obtained our goal of producing a quasi-equilibrium state with
characteristics close to those desired.

3.10.1 Tests on known distribution functions

We have tested our method on isotropic systems by initialising Plummer and
polytropic models and then on some anisotropic configurations associated
with the f (ν) family, under conditions of stability. By construction, we have
a good match at the level of density, velocity dispersion, and anisotropy pro-
files. Differences in the fourth order moment of the velocity distribution are
typically at the level of a few percent. The models initialised with the method
outlined above appear to be stable, except for some modest re-arrangements
of the initial anisotropy profile in the case of the f (ν) models. In the latter
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case, there is a tendency for the anisotropy content in the central region to
decrease so that a flatter profile in α(r) is eventually generated.



Chapter 4

A study of the radial orbit
instability

In this Chapter we investigate, by means of numerical simulations performed
with the CGS code, the stability of collisionless stellar systems. In the first
part of the Chapter we focus on the radial orbit instability in the f (ν) family.
In the second part we discuss a side, but interesting, issue with respect to
the goals of this Thesis: the dependence of the radial orbit instability on the
shape of the central density and anisotropy profiles. The results presented in
Sect. 4.2 have been published in Trenti & Bertin (2005), while the remaining
issues are discussed in a short paper (Trenti & Bertin) recently submitted.

4.1 The radial orbit instability

The study of the stability of stellar system whose distribution function is
available in analytical form can be carried out along three different ap-
proaches: N-body simulations (e.g., see Henon 1973; Merritt & Aguilar
1985; Barnes et al. 1986; Aguilar & Merritt 1990; Allen et al. 1990; Sti-
avelli & Sparke 1991; and following papers), linear modal analysis (Poly-
achenko & Shukhman 1981; Palmer & Papaloizou 1987, 1988; Weinberg 1989,
1991, 1994; Saha 1991, 1992; Bertin et al. 1994; see also Fridman & Poli-
achenko 1984; Palmer 1993, and references therein), and energy principles
(e.g., Sygnet et al. 1984; Kandrup & Sygnet 1985; Goodman 1988, and ref-
erences therein).

Spherical stellar systems with too many radial orbits have thus been
found to be unstable to perturbations that break the spherical symmetry
and remove the excess of kinetic energy in the radial degree of freedom
(see Fridman & Poliachenko 1984 and Palmer 1993). The existence of such
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radial orbit instability was first investigated by Polyachenko & Shukhman
(1981), who proposed an “empirical criterion” for the onset of instability
(2Kr/KT > 1.7 ± 0.25) based on the global content of kinetic energy in the
radial with respect to that in the tangential degrees of freedom. Following in-
vestigations (Barnes 1985; Merritt & Aguilar 1985; Aguilar & Merritt 1990;
Palmer 1993) noted that different families of models may exhibit different
anisotropy thresholds for the instability, thus widening the uncertainty in-
terval around the value of 1.7 suggested earlier. For example, while for the
so-called f∞ and f (ν) models a threshold value similar to that suggested by
Polyachenko and Shukhman may be applicable (see Bertin & Stiavelli 1989
and next Section), for the family of Dehnen (1993) density profiles with an
Osipkov-Merritt type (Osipkov 1979; Merritt 1985) of anisotropy profile it
has been argued that such value is as high as ≈ 2.5 (Meza & Zamorano
1997). On the other hand, systems with an arbitrarily small content of ra-
dial anisotropy can be unstable, although with very small growth rates (as
shown by Palmer & Papaloizou (1987) by means of a linear modal analysis).

The study of the stability is of primary importance in stellar dynam-
ics, since models that are unstable on a short time scale cannot be applied
to interpret the structure of observed stellar systems, because most of the
observed systems are likely to be slowly evolving.

In this context, the boundary between stable and unstable models can
play an interesting role, because it is often argued that galaxies are in a
dynamical state close to marginal stability. The slow evolution of the system
may be influenced by other physical processes acting on the galaxy, such
as interactions with gas, globular clusters and black holes or tidal effects
from neighboring objects (Bertin & Trenti 2003). Thus, while studying the
stability of the f (ν) models in the next Section, we also focus on the properties
of the final equilibrium state reached by marginally unstable models.

In the second part of this Chapter we then discuss some interesting re-
sults on the relation between the radial orbit instability and the kinematic
properties of the central region of the stellar system. Although, these results
are somewhat outside the main topic of this Thesis, a better understanding of
the role played by the radial orbit instability in defining the properties of col-
lisionless systems is of high interest for the violent collapse simulations that
we discuss in Chapter 6 and in the current context of structure formation.

4.2 Stability of the f (ν) models

From the simple Polyachenko & Shukhman criterion for the onset of the
radial orbit instability we should expect the f (ν) models to become unstable
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when 2Kr/KT & 1.75 (Polyachenko & Shukhman (1981); see also Fridman
& Poliachenko (1984)). We thus note that models with Ψ . 4 should be
unstable, in a way that is basically independent of ν (cf. Fig. 5.9).

The study of the stability of the f (ν) models could be approached either
through a linear modal analysis (see Bertin et al. 1994) or by means of
N-body simulations. Here we prefer the latter approach, starting from ini-
tial conditions obtained by sampling the relevant distribution functions with
Monte Carlo techniques.

We have simulated the evolution of different f (ν) models by means of our
particle-grid code, described in Sect. 3.3. We recall that the evolution of the
system is (nearly) collisionless because the simulation particles interact with
one another via a mean field computed with Fourier techniques; the mean
density associated with the particle distribution is expanded in spherical har-
monics with contributions up to l = 4 (the code can handle contributions up
to l = 6). This choice of code is well suited for our stability problem, since its
performance has been tested to be high for quasi-equilibrium conditions and
for smooth spherically symmetric spatial distributions. To further check our
results, we have run a comparison simulation with the tree code of Londrillo
(see Londrillo et al. 2003) for the (1; 3.2) model and found no significant
differences.

In order to sample points from the f (ν) distribution function and thus to
create the initial conditions needed to study the stability of the f (ν) models,
we have used the exact inversion technique described in Sect. 3.9.2. In prin-
ciple, the models extend out to infinity. In practice, we set a cut-off radius
rcut ≈ 50 rM , and we rescale the mass profile in such a way that M(rcut) = M .
The introduced mass “loss” is generally less than 1%.

Most simulations have been run with 2 × 105 particles. If we refer to a
system with total mass M = 1011 M� and half-mass radius rM = 5 kpc, the
evolution is followed from t = 0 up to t = tend = 2 Gyr. This corresponds
to more than 20 dynamical times; in fact, for the range of (ν; Ψ) considered
and the above scales for M and rM , we have td ≈ (0.65 − 0.80) × 108yr.
At t & 10td the system, even when it has initially evolved because of initial
unstable conditions, settles down into an approximate equilibrium state.

The total energy is typically conserved within 10−5 over one dynamical
time. The models are non-rotating; the total angular momentum remains
within 10−4 around the small value generated in the initialization process.

To quantify the effects of the radial orbit instability, we have focused on
the evolution of the central density concentration, of the shape of the inertia
ellipsoid, computed on the basis of the distribution of the simulation particles
within a sphere of radius 3 rM , and of the global anisotropy 2Kr/KT ratio.
The end-products of unstable initial conditions are characterized by a final
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prolate state (with axial ratios a2/a1 ≈ a3/a1 < 1), with maximum projected
ellipticity consistent with that of an E3 galaxy. For initially unstable models,
the central density concentration drops during evolution, but the radial scale
of the system remains approximately constant. For example, for the (1/2; 3)
model, the central concentration at the end of the simulation is more than 10
times smaller than that of the initial conditions, but the radius of the sphere
that contains 5% of the total mass increases only by 6%, while the half-mass
radius remains basically unchanged.

We have studied the evolution of the unstable models in terms of expo-
nential growth curves of the form

g(t) = g0 + g1[exp (kt) − 1], (4.1)

where g0, g1, and the growth rate k are free parameters and g represents a
global quantity such as the global anisotropy ratio. To capture the initial,
approximately linear phase of the evolution, we have decided to make the fit
in terms of the exponential growth over a reduced time interval, from t = 0
to t = tlin < tend, defined implicitly by the relation:

(

2Kr

KT

)

(tlin) =
1

2

[(

2Kr

KT

)

(tend) +

(

2Kr

KT

)

(0)

]

. (4.2)

Obviously, this choice of tlin is arbitrary and should be considered only as a
convenient reference time-scale.

In principle the results from the fit could be influenced by the number of
particles N employed in the simulation, since we resort to the noise associated
to the initial conditions to trigger the radial orbit instability. In practice we
have checked that the growth rate k is measured consistently (with differences
of the order 15% at most) over a wide range of N (from 2 104 to 8 105).

The results of the simulations are reported in Table 4.2. The threshold for
instability is found to be at 2Kr/KT ≈ 1.70, consistent with the criterion of
Polyachenko & Shukhman (1981). Close to conditions of marginal stability,
quantities such as 2Kr/KT vary slowly and by very small amounts, so that
the fit in terms of exponential growth curves is not well determined.

An interesting result is the following. We checked whether the final state
reached as a result of the instability could be represented by a model of the
f (ν) family to which the initial unstable model belonged. To do this, we
fitted the spherically averaged density and anisotropy profiles of the end-
states of the simulations by means of the same family of f (ν) models. The
best fit model thus identified (note the quality of the fit in relation to both
kinematics and density distribution) turns out to be the marginally stable
model of the sequence with the same value of ν (see also the interesting
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arguments and results by Palmer et al. (1990)). In the case of ν = 1, which
we studied in greatest detail, the profiles of the end-states obtained starting
from initially unstable models with Ψ in the range from 3 to 4 are well fitted
by the (1; 4.2) model (see Fig. 4.1). For the violently unstable initial (1; 2)
model, the final state is best reproduced by the (7/8; 4) model, which is still
moderately unstable.

We have also run a number of simulations of models expected to be stable
and checked that indeed the models preserve their state for many dynamical
time scales. One of the most concentrated model that we have been able to
simulate properly is the (1/2; 9.4) model, for which we recall that the central
concentration is ρ(0)/ρ(rM) = 1.14 × 105 (see Fig. 3.10).

Table 4.1: Growth rate k, with an estimate of the related uncertainty ∆k,
for the radial orbit instability from the simulation of a set of f (ν) models.
Here κ = 2Kr/KT is the global anisotropy parameter and η = a3/a1 is the
axis ratio of the inertia ellipsoid referred to the sphere of radius 3 rM . For
M = 1011 M� and rM = 5 kpc, k is given in units of 10−8 yr−1.

(ν; Ψ) k ∆k κ(0) κ(tend) η(tend)
(1;2.0) 0.85 0.1 2.65 1.87 0.65
(1;3.0) 0.48 0.07 2.17 1.84 0.67
(1;3.2) 0.37 0.07 2.09 1.84 0.69
(1;3.4) 0.34 0.07 2.02 1.83 0.74
(1;3.6) 0.30 0.05 1.95 1.85 0.80
(1;3.8) 0.16 0.04 1.89 1.82 0.85
(1;4.0) 0.08 0.05 1.84 1.81 0.91
(1;4.2) 0.007 0.10 1.78 1.76 0.94
(1;5.0) 0.001 0.01 1.60 1.60 0.99
(1;9.0) < 10−4 - 1.32 1.32 0.99

(3/8;3.0) 0.90 0.10 2.28 1.86 0.73
(3/8;5.0) 0.45 0.15 1.75 1.71 0.93
(1/2;3.0) 0.70 0.10 2.21 1.86 0.70
(1/2;4.0) 0.43 0.05 1.92 1.80 0.85
(1/2;5.0) 0.1 0.2 1.68 1.67 0.96
(1/2;6.0) < 10−3 - 1.54 1.54 0.99
(3/4;3.0) 0.64 0.05 2.20 1.85 0.70
(3/4;4.0) 0.16 0.02 1.86 1.76 0.84
(3/4;5.0) < 2 10−2 - 1.63 1.63 0.98
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Figure 4.1: On the left frames, density and anisotropy profiles of the end-
products of a simulation starting from the unstable (1; 3.2) model (error bars)
fitted by the marginally stable (1; 4.2) model of the f (ν) family (solid line);
units for ρ are the units adopted in the simulation. The right frames show
the residuals ∆ρ = ρ(4.2) − ρ and ∆α = α(4.2) − α.
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4.3 Exceptionally stable equilibria resulting

from special processes of collisionless col-

lapse

In this second part of the Chapter we investigate a side, but interesting, issue
with respect to the objectives of this Thesis: the apparent suppression of the
radial orbit instability, that we observed in simulations starting from very
cold initial conditions, and its possible physical explanations in terms of the
shape of the density and anisotropy profiles reached during the collapse.

The radial orbit instability is thought to play an important role during
the formation of self-gravitating structures from collisionless collapse via in-
complete violent relaxation, a process that has been argued to be the main
driver for the formation of elliptical galaxies (van Albada 1982). In fact, if
a system starts from sufficiently cold initial conditions (i.e. with a low ini-
tial virial ratio u = (2K/|W |)t=0 . 0.15), it collapses with stars falling in
almost radially toward the center, often ending up in triaxial configurations,
the origin of which is attributed to the radial orbit instability (Palmer et al.
1990; Udry 1993; Hjorth & Madsen 1995). In general, when such collision-
less collapse leads to “realistic” final configurations, the values of pressure
anisotropy achieved at the end of the collapse turn out to be consistent with
the threshold value associated with the instability criterion proposed by Poly-
achenko & Shukhman (1981). Currently, galaxy formation is approached in
the generally accepted cosmological context of hierarchical clustering (see e.g.
Meza et al. 2003, and references therein), but the mechanism of incomplete
violent relaxation remains an important ingredient and thus quantifying the
effects of the radial orbit instability is relevant to the explanation of the ob-
served flattening of gravitational structures in cosmological simulations (see
Hopkins et al. 2005).

Here we present the results of some numerical experiments that are aimed
at clarifying the following two issues: Are there processes of collisionless
collapse able to lead to equilibria of the exceptional type, that is equilib-
ria violating the criterion proposed by Polyachenko and Shukhman (1981)?
What is the structural property that makes some models with low levels of
global radial anisotropy unstable and others with high levels of global radial
anisotropy stable?

As to the first issue, in a set of simulations of collisionless collapse (Trenti
et al. 2005; see also Chapter 6) we have investigated the role of mixing in
phase space on the relaxation of the end products of the simulations. We
have thus run, for comparison, a number of experiments in which phase
mixing is inefficient. These are simulations with highly symmetric initial
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conditions. In spite of the cold initial conditions, with u < 0.1, and of the high
level of radial anisotropy achieved in the final configurations, with 2Kr/KT

sometimes above 2.5 (during the process of collapse values of 2Kr/KT above
10 are reached), the radial orbit instability did not develop. From inspection
of the structure of the final products of these simulations, it appears that most
likely the physical factor at the basis of the observed partial suppression of
the radial orbit instability is the existence of an almost perfectly isotropic
central region that is realized in these systems, which appears to be more
efficient for more concentrated models. This is the clue that we consider in
order to address the second issue raised above.

In fact, we note that at fixed content of global anisotropy 2Kr/KT , the
f (ν) and f∞ models (for which we find that the threshold value of 2Kr/KT

is close to 1.7) are less isotropic locally, in their core, than similar systems
with anisotropy profiles of the type introduced by Osipkov (1979) and Mer-
ritt (1985), as studied by Meza & Zamorano (1997), which in turn are less
isotropic in their central regions than the equilibrium states obtained at the
end of our set of simulations. In the opposite direction, we recall that the
generalized polytropic spheres, with small content of global anisotropy, found
to be unstable by Palmer & Papaloizou (1987) are characterized by a con-
stant and finite local anisotropy level down to r = 0. To confirm this picture
and to study the effects on the radial orbit instability of central density and
anisotropy profiles decoupled from each other, we cannot resort to equilib-
rium models with the above characteristics and with analytically available
distribution function. We have then constructed with the help of the Jeans
equations N-body equilibria with density and anisotropy profiles qualitatively
similar to those found as end states for the simulations of collisionless col-
lapse violating the criterion proposed by Polyachenko & Shukhman (1981)
and thus demonstrated that some configurations with 2Kr/KT up to ≈ 2.9
do not show evidence of rapid evolution.

4.3.1 Numerical simulations

Most of the numerical simulations of this set have been carried out with our
particle-mesh code. We have also run a few simulations with the fast tree
code GyrFalcON (Dehnen 2000, 2002) to check, with success, that our results
are not biased by the specific choice of the numerical code.

We focus on a set of simulations that start from homogeneous spherically
symmetric configurations obtained by symmetrizing a clumpy configuration
with ten cold clumps, the kinetic energy of which is in the collective motion
of their center of mass. In most of the runs u = (2K/|W |)t=0 < 0.1; the
clump radius is taken to be equal to one half of the half-mass radius of the
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Table 4.2: Collapse simulations. The simulations have been run with N = 105

particles, except S1+ for which N = 8 × 105. The columns list the initial
virial ratio u = (2K/|W |)t=0, the fractional mass loss ∆M = [M(t = 0) −
M(tend)]/M(t = 0), the final global anisotropy κ = 2Kr/KT of the system
of bound particles, its anisotropy radius rα (i.e. the radius where the local
anisotropy parameter is α = 1) in units of the half-mass radius, and the
ratios ε = b/a and η = c/a, where a > b > c are the axes of the final
quasi-equilibrium state computed from the inertia tensor.

u ∆M κ rα/rM ε η
S1+ 0.07 0.01 2.49 0.18 1.00 0.99
S1∗ 0.07 0.01 2.54 0.18 0.99 0.98
S1† 0.07 0.01 2.52 0.18 0.98 0.97
Sa 0.05 0.03 2.75 0.18 0.98 0.97
Sb 0.03 0.07 2.56 0.16 0.79 0.66
S2 0.08 0.10 2.16 0.30 1.00 0.98
S3 0.25 0.00 2.13 0.29 0.99 0.98

system. The symmetrization is performed by accepting the radius and the
magnitude of the velocity of each simulation particle, following the procedure
to generate clumpy conditions discussed in Sect. 6.3, and by redistributing
uniformly the angular variables in both position and velocity space. This
initialization procedure leads to a smooth initial density profile, decreasing
approximately linearly in radius (ρ(0) ≈ 2ρ(rM)), which creates a potential
well that is deeper than the one of a uniform sphere with the same cutoff
radius. The initial system is non-rotating and isotropic. Mild correlations in
the magnitude of the velocities are present, since there is a residual memory
of the cold clumpy state. The precise form of the density profile as well as
the strength of the velocity correlations depend on the details of the initial
random positions of the clump centers, i.e. on the seed of the random number
generator.

In Table 4.2 we summarize the properties of this set of simulations. The
initial conditions of the S1 series are generated using the same positions for
the clump centers but a different total number of particles N (to ensure that
the properties of the end products do not depend on N). Run S1+ has 8×105

simulation particles; S1∗ and S1† have 105 particles, but the first simulation
is run with our particle-mesh code, while the second with Dehnen’s code.
Runs Sa and Sb are colder versions of S1∗ (obtained by means of a global
rescaling of the initial velocities by a constant factor). Runs S2 and S3
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Figure 4.2: Left Panel: evolution of the aspect ratios ε = b/a and η = c/a,
where a ≥ b ≥ c are the values of the axes of the system evaluated from the
inertia tensor, for the S1+ simulation. Right panel: evolution of the ratio
2Kr/KT for the same simulation.

are generated using a different seed for the random numbers. In order to
characterize the level of anisotropy achieved in the end-states obtained from
the simulations, we refer to the global anisotropy parameter 2Kr/KT and to
the anisotropy profile α(r), defined as α(r) = 2 − (〈v2

θ〉 + 〈v2
φ〉)/〈v2

r〉.
During collapse, the spherical symmetry is well preserved, as can be seen

for S1 not only from the evolution of the eigenvalues of the inertia tensor of
the system (Fig. 4.2), but also from the conservation of the single particle
angular momenta (Fig. 4.3). Mass loss (i.e. the number of particles that
acquire a positive energy during the collapse) is limited, well below the loss
recorded for homogeneous uniform spheres with similar initial virial ratio u,
where the system can lose up to one third of its total mass. The combina-
tion of spherical symmetry and limited mass loss leads to high final density
concentrations, with ρ(0)/ρ(rM) & 1500 in run S1. As shown in Fig. 4.4, the
density profile is reasonably well represented by a rather concentrated f (ν)

model or by a Jaffe density profile (Jaffe 1983).

The global amount of pressure anisotropy (see Fig. 4.2) evolves rapidly
in the first few dynamical times and then reaches its quasi-equilibrium value
at t ≈ 5td. When 2Kr/KT reaches its peak value, at the time of maximum
contraction of the system, the anisotropy radius rα (defined implicitly by
α(rα) = 1) is located well inside: at that time, for run S1 the mass within
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Figure 4.3: Left Panel: Variation of one component of the specific angular
momentum of the simulation particles (∆Jx = Jx(tend)−Jx(t = 0)) relative to
a reference scale, defined as the average value of |Jx|, for run S1+. Due to the
spherical symmetry, the single particle angular momenta are approximately
conserved. The single particle energy E is given in code units. Right panel:
Distribution of initial angular momenta for the same simulation.

rα is only 1% of the total mass, while later the sphere associated with the
anisotropy radius contains approximately 20% of the total mass. The final
global content of pressure anisotropy is high also for run S3, which starts from
moderately warm initial conditions (u = 0.25; for comparison, see the results
of non-symmetrized runs with phase-space mixing presented in Chapter 6).

Interestingly, the central regions have a final pressure anisotropy profile
slightly biased toward tangential orbits (see Fig. 4.4). This effect appears in
the high resolution S1+ simulation, with 8×105 particles; the realization with
105 particles (S1∗) does not exhibit this feature and indeed is characterized by
a slightly higher value of 2Kr/KT . In any case the transition from isotropic
to radial pressure is very sharp. The shape of the anisotropy profile cannot
be represented either by a profile similar to those of the f (ν) models or by an
Osikpov-Merritt profile (Osipkov 1979; Merritt 1985).

To check the robustness of the numerical results, with Dehnen’s tree code
we have let the final configuration reached in S1∗ evolve for 30 additional dy-
namical times, without noticing any sign of significant changes. In addition,
we have run a collapse simulation starting with the same initial conditions
as S1∗ using Dehnen’s tree code during the entire simulation (run S1†); this
simulation shows no macroscopic differences with respect to S1∗.
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Figure 4.4: Density (left) and anisotropy profile (right) for the final state
reached in the S1+ simulation. The solid line in the left panel is the density
profile associated with the (1/2; 6.4) f (ν) model. The anisotropy profile is
compared to the Osipkov-Merritt profile (solid line) and to the profile for
an f (ν) model which has a similar amount of global anisotropy (dotted line;
the (1/2; 1) model with the same rα as the end-state for S1+). Clearly the
theoretical models are unable to capture the rapid increase in α at r ∼ rα.

If we consider colder and colder initial conditions within the framework
of simulations considered in this paper, the radial orbit instability eventually
sets in. A reduction of the initial virial ratio u below 0.05 for S1-like initial
conditions (by rescaling the velocities by a constant factor) leads to runs that
show evidence for the radial orbit instability: a simulation with u = 0.03 (Sb)
leads to a strongly flattened system, with a final amount of global anisotropy
close to 2.5.

A simulation starting from u = 0.05 shows an interesting behavior which
we may identify as that of marginal stability, since the final state is charac-
terized by an aspect ratio (see Fig. 4.5) η that oscillates between 0.99 and
0.93, on a time scale longer than the dynamical time; the related anisotropy
content is high (2Kr/KT ≈ 2.75).
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Figure 4.5: Ellipticity ratios (left) and anisotropy content (right) for the Sa
simulation, as plotted in Fig. 4.2. Note the extremely high value of anisotropy
content (2Kr/KT > 20) reached during the collapse.

4.4 Exceptionally stable equilibria constructed

from the Jeans equations

We now address the issue of whether a given initial configuration, character-
ized by assigned density ρ(r) and pressure anisotropy α(r) profiles, is stable
with respect to the radial orbit instability. We are not aware of models with
analytical distribution function able to incorporate the sharp feature in the
anisotropy profile, of the kind observed at the end of the simulations described
in the previous Section. Therefore, we decided to initialize the simulations by
means of candidate equilibrium solutions obtained from the Jeans equations,
as outlined in Sect. 3.10. We should emphasize that the simulations that
we describe below in this Section are simulations of candidate equilibria. In
fact, since we never reach the point of actually reconstructing an underlying
equilibrium distribution function, if we happened to find significant evolution
we could be either in a situation of genuine instability, or, more simply, in a
situation of non-equilibrium. In turn, since we will show cases where we do
not find such evolution, we may claim that indeed we have found not only
a genuine quasi-equilibrium state but also proved that it is approximately
stable.

To model a density profile of the kind found in the S1 simulations, we
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Figure 4.6: Ellipticity ratios (left) and anisotropy content (right) for the J1
simulation, as plotted in Fig. 4.2.

use a superposition of a regularized Jaffe profile:

ρJ(r) =
A

(r2 + ε2)(r + b)2
, (4.3)

with A, ε, and b free scales, and a central core of the form:

ρC(r) =
A′

(r2 + ξb2)20
, (4.4)

where A′ is a free scale, while ξ a dimensionless parameter of order 1 (ξ ≈ 0.6).
The form for the density ρmod = ρJ + ρC is taken for convenience, so as
to reproduce not only the large-scale structure of the density distribution
realized in the S1 simulations, but also the bump in the density profile around
rM/5 (see Fig.4.4).

As noted earlier, the S1 anisotropy profile is flatter than the correspond-
ing Osipkov-Merritt profile with same rα at small radii, while it is less steep
at large radii. Thus we chose to represent the profile with:

α(r) = 2
rγ

rγ + rγ
a

(4.5)

with ra and γ being free parameters. A single choice of the (ra; γ) values
is unable to correctly reproduce the anisotropy profile measured from the
simulation over the entire radial range. Thus we fit separately the anisotropy
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Figure 4.7: Ellipticity ratios (left) and anisotropy content (right) for the J2
simulation, as plotted in Fig. 4.2.

in the core, up to a radius rch & rα, where γ = 4, and in the halo, i.e. for
r > rch, where γ = 6/5. In a neighborhood around rch the two profiles are
matched so that the final α(r) and its derivative are continuous functions.

With a suitable choice for the various parameters that define the above
functions, the profiles obtained from the simulation can be fitted with an
accuracy of better than 10%. We take this as a good starting point to inves-
tigate the stability of equilibrium configurations similar to those produced in
the simulations of collisionless collapse.

We have first studied the evolution of a model initialized with density and
anisotropy profiles similar to those of runs S1 (see entry J1 in Table 4.3). We
have then proceeded to study the evolution of neighboring configurations by
slightly modifying the density and/or the anisotropy profiles. In particular,
we have considered models with a density profile without the inner “bump”
(i.e., without the ρC contribution), and different forms for the anisotropy
profile, ranging from steep profiles over the entire radial range, to Osipkov-
Merritt and f (ν)-like profiles. Interestingly we have found that although none
of the various combinations turns out to be violently unstable, nevertheless,
the only simulation where practically no sign of evolution occurs is J1, the
one associated with the profiles that best fit those of S1.

For the systems that show definite signs of evolution, the evolution ap-
pears to be very slow. For example, in the J2 simulation the initial configu-
ration lasts basically unchanged for more than 10 dynamical times. In this
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Table 4.3: Simulation runs initialized with models constructed from the Jeans
equations. The simulations have 2×105 particles. Here we list the initial and
final global anisotropy κ = 2Kr/KT of the system, its final anisotropy radius
in terms of the half-mass radius, and the final aspect ratios ε = b/a and
η = c/a, where a > b > c are the axes evaluated from the inertia tensor. The
initial conditions are summarized in the last column and range from the best
fit of S1, simulation J1, to regularized Jaffe profiles ρJ (see Equation 4.3)
with Osipkov-Merritt or f (ν) like anisotropy. Note that simulation J4, initial-
ized with a regularized Jaffe density plus an unstable f (ν) anisotropy profile
(κ ≈ 2.3) evolves rapidly within the first dynamical time and the anisotropy
is quickly reduced below κ = 2 while preserving the spherical symmetry.

κ0 κend rα/rM ε η notes:
J1 2.47 2.42 0.26 0.98 0.98 as S1

J2 2.92 2.12 0.37 0.48 0.48 ρJ + αS1

J3 2.40 2.45 0.28 0.96 0.94 ρJ + αOM

J4 2.29 1.93 0.61 0.99 0.99 ρJ + α
f(ν)

J5 2.47 2.26 0.30 0.63 0.63 ρS1 + αOM

case, illustrated in Fig. 4.7, the system remains close to spherical symmetry
with 2Kr/KT ≈ 2.9, and ends up only much later as a prolate system.

4.5 Discussion and conclusions

In this Chapter we have investigated some issues related to the radial orbit
instability by means of an extensive set of numerical simulations aimed at
identifying the conditions for the onset of the instability.

We have checked that the f (ν) models are stable if the concentration
parameter Ψ is not too low (i.e., Ψ & 4.) In the stable range of central
concentration the models are well suited to describe the observed photomet-
ric and kinematic properties of the luminous component of bright elliptical
galaxies (see Chapter 5), and provide a very good fit to the phase space
structure of the end products of simulations of cold collapse (see Chapter 6).
Curiously, we find that unstable models tend to evolve by staying close to
the equilibrium sequence, while moving up in Ψ so as to reach marginal sta-
bility. This suggests that the products of the evolution of unstable models
may be used to describe gravitational systems that shows departure from the
spherical symmetry.



102
CHAPTER 4. A STUDY OF THE RADIAL ORBIT

INSTABILITY

Interestingly the coincidence for the f (ν) models between negative ther-
modynamic temperature and presence of the radial orbit instability, that we
had conjectured in Sect. 2.7 on the basis of the Polyachenko & Shukhman
(1981) criterion, is confirmed by the numerical investigation of the stability
carried out here.

In the second part of the Chapter, we have then studied and clarified
the dependence of the radial orbit instability on the shape of the anisotropy
profile in the central region of a stellar system. By means of a series of nu-
merical simulations we have shown that stable, centrally isotropic equilibria
with a significant global amount of anisotropy can be reached during highly
symmetric cold collapse events or initialized by solving the Jeans equations.
In particular we have found a metastable state with 2Kr/KT ≈ 2.9.

The experiments that we have performed suggest that the presence of
an isotropic core may act as an important stabilizing factor for the radial
orbit instability. The two-component (core-halo) structure for run S1+ is
indeed evident not only in the density and pressure anisotropy profiles (see
the structure out to r ≈ rM/5 in Fig. 4.4), but also in the phase space
distribution N(E), as ind icated by the peak located at high values of the
binding energy (E ≈ −14, in code units; see bottom left panel of Fig. 4.4).

These results are reminiscent of the stabilizing role that a hot bulge can
provide in relation to the stability of self-gravitating disks, as noted in a num-
ber of papers starting with Berman & Mark (1977) and Sellwood (1981). For
disks, the detailed mechanisms underlying the origin or the suppression of
global bar and spiral instabilities are reasonably well understood and known
to depend on the key structural properties of the basic state (i.e., the disk
density, effective velocity dispersion, and differential rotation profiles). For
anisotropic spherical stellar systems we still lack a clear picture of the rel-
evant underlying mechanisms. In this respect, the results presented here
offer an interesting clue to more systematic studies that should be devoted
to investigating the nature of the radial orbit instability in two-component
systems, also in view of the central properties of the dark halo.



Chapter 5

f (ν) Models

In this Chapter we investigate the dynamical properties of the f (ν) models
systematically . We also present a first comparison with the observations
by fitting the photometric and kinematic profiles of the standard elliptical
galaxy NGC3379. It is surprising to find that the models, in spite of their
simplicity and of their one-component nature (which effectively ignores the
possible presence of dark matter), manage to fit well the observations (the
entire photometric profile and the kinematics out to R . Re). The content
of this Chapter has been published in Trenti, M. & Bertin, G. (2005) A&A
429, 161.

5.1 Introduction

A simple picture for the incomplete violent relaxation of stellar systems con-
siders the collapse of a dynamically cold cloud of stars or star-clumps initially
far from equilibrium. The study of this ideal and relatively simple process,
pioneered by important analysis in the 60s (starting with Lynden-Bell 1967)
and simulations in the 80s (see van Albada 1982), is still incomplete. A proper
understanding of such process is a prerequisite to more ambitious attempts
at constructing physically justified models of elliptical galaxies in which the
problem of galaxy formation is set in the generally accepted cosmological
context of hierarchical clustering.

Before the development of such cosmological scenarios, a first step (in
the direction of incorporating in a simple analytical and physically justified
framework the clues gathered from simulations of collisionless collapse) had
been taken in terms of the so-called f∞ models (Bertin & Stiavelli 1984).
These models are constructed from a distribution function which, in the
spherical limit, reduces to f∞ = A(−E)3/2 exp (−aE − cJ2/2), for negative
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values of E, and vanishes for positive values of E; here A, a, and c are
positive constants and E and J denote the specific star energy and angular
momentum.

From those earlier investigations, it immediately became clear that the
physical clues gathered from the picture of collisionless collapse (i.e., that
incomplete violent relaxation leads to systems that are well relaxed in their
inner regions, r � rM , and characterized by radially anisotropic envelopes
for r � rM) do not lead uniquely to the f∞ models, but instead identify
a wide class of attractive distribution functions of which f∞ represents just
one simple and interesting case. At that time, the primary goal of a series of
investigations (described, e.g., by Bertin & Stiavelli 1993) was to test whether
the models inspired by studies of collisionless collapse were realistic and thus
could serve as a useful tool to interpret the observations. Indeed, the f∞

models turned out to “explain” the R1/4 luminosity law (de Vaucouleurs
1948) and, extended to the two-component case, were used successfully to
probe the presence and size of dark halos in elliptical galaxies.

Because of the focus on such astronomical applications, the problem of
a detailed comparison between the f∞ or other models and the products
of collisionless collapse from N-body simulations was given lower priority
and basically left aside. Yet, it was pointed out that, with respect to the
products of numerical simulations of collisionless collapse, the f∞ models
had the undesired feature of being too isotropic. Some authors (Merritt et al.
1989) thus suggested that the f∞ models should be extended to and used in
the parameter domain where a < 0; however, this attempt failed, not only
because a proper physical justification was lacking, but especially because
such “negative-temperature” models suffer from the opposite difficulty, i.e.
they were shown to be so anisotropic that they are violently unstable and
bound to evolve on a time scale even smaller than the typical crossing time.

In a recent paper (Bertin & Trenti 2003; see also Chapter 2) we have re-
visited the problem of the structure and dynamics of partially relaxed stellar
systems starting from a thermodynamic description. In view of the paradigm
of the gravothermal catastrophe (see Antonov 1962; Lynden-Bell & Wood
1968; Katz 1978, 1979, 1980), we found it appropriate to approach the prob-
lem in terms of the so-called f (ν) models (for a definition, see Sect. 5.2); with
respect to the f∞ models, the f (ν) models follow from a statistical mechanical
derivation (Stiavelli & Bertin 1987) that is formally straightforward, while
they are also known to have generally similar and reasonably realistic struc-
tural properties. It should be noted that the dynamical properties of the
f (ν) models had not been studied earlier in detail. Such recent investigation,
focusing on the issue of the gravothermal catastrophe, convinced us that the
f (ν) models do have many attractive features; in particular, these models
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turn out to have a higher degree of radial pressure anisotropy with respect to
the f∞ models, making them more suitable to describe the results of simula-
tions of collisionless collapse. Such encouraging preliminary inspection was
the basis for a thorough study that we have thus performed and that we
present here.

We provide here a systematic description of the dynamical properties of
the f (ν) models. In the spherical limit, these models define a two-parameter
family, characterized by the dimensionless parameter Ψ, measuring the depth
of the galaxy potential, and the dimensionless parameter ν, defining the form
of a third global quantity Q (which is argued to be approximately conserved
during collisionless collapse, in addition to the total energy and the total
number of stars; see Sect. 5.2 for the relevant definitions). In Sect. 5.3 we
present intrinsic and projected density profiles and fit the latter structural
characteristics in terms of the R1/n law (Sersic 1968). We then proceed to
illustrate in detail their phase space properties, in particular by calculating
the relevant pressure tensor profiles, the pressure anisotropy content, the
projected velocity dispersion profiles, the line profiles (line-of-sight velocity
distribution), and the relevant phase space densities N(E, J 2) and N(E)
(Sect. 5.4). In Sect. 5.5 we perform a first test of the viability of these
models by applying them to the observed properties of NGC 3379, a galaxy
that is characterized by lack of significant rotation and is likely to possess
only small amounts of dark matter. The conclusions are drawn in Sect. 5.6.

This Chapter also sets the basis for a detailed comparison between the f (ν)

family of models and the products of collisionless collapse resulting from N-
body simulations, to be presented in the next Chapter. For a full comparison
with the observations of elliptical galaxies, the models should be extended to
allow for the presence of a sizable dark halo and of significant rotation.

5.1.1 Models of galactic structure: physical outlook

The need for anisotropic models to describe elliptical galaxies can be traced
back to the empirical arguments that come from the observations of non-
spherical geometry in the absence of significant rotation (e.g., see the dis-
cussion provided by Bertin & Stiavelli 1993 and references therein); to be
sure, direct evidence for pressure anisotropy in round systems is not easy to
obtain, because so far the observed line profiles show only modest deviations
from a Gaussian (e.g., see Gerhard et al. 2001).

The main goal of this Chapter is to study the properties of a given specific
dynamical context able to provide physical justification for the existence of
anisotropic equilibria, that is the dynamical framework of collisionless col-
lapse. The process of collisionless collapse, together with its accompanying
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mechanism of incomplete violent relaxation, is one (but not the only) ele-
ment that is expected to play an important role in the formation of stellar
systems. In spite of the many papers that have addressed issues related to
such dynamical context (in addition to the papers cited earlier in the In-
troduction, e.g. see Shu 1978, 1987; Voglis 1994; Hjorth & Madsen 1995),
it is not yet clear whether an analytically tractable distribution function,
or family of distribution functions, can be assigned to the products of such
collisionless collapse. Here we try to provide a contribution to this problem.
At the same time, we still need to establish how far the properties of such
products, often studied in a simplified one-component picture, would be from
those of observed stellar systems, and in which way.

An enormous amount of work has focused and is currently focusing on the
demands (on galactic structure) from the cosmological context. In particu-
lar, this has led astronomers to look for the presence, in observed objects,
of cuspy density distributions of dark matter, following a universal profile
suggested by cosmological simulations (see Navarro et al. 1997; Moore et al.
1998; Ghigna et al. 2000). Other studies have addressed the issue of the
establishment of the galaxy scaling laws (such as the Fundamental Plane for
elliptical galaxies; e.g., see Meza et al. 2003; Lanzoni et al. 2004) in the ac-
cepted cosmological scenario. These demands are beyond the scope of the
present work, but should eventually be faced, as a point of contact between
dynamical investigations of individual galaxies and studies of the evolving
universe from which they were formed.

In this respect, a point to be noted, to avoid unnecessary confusion about
the aims of purely dynamical studies, is the following. A priori, studies of
collisionless collapse within the line of research adopted here have nothing
to say about some important issues such as the establishment of the Fun-
damental Plane (but see González-Garćıa & van Albada 2003; Nipoti et al.
2003), because the relevant scaling laws depend on physics that goes beyond
pure dynamics, which is inherently scale-free. In turn, pure dynamical stud-
ies can try to explain why galaxies prefer the R1/4 law, which is a structural
property, instead of just accepting it as an empirical fact (as often done in a
number of otherwise important astrophysical studies).

Thus we would like to emphasize that this work represents only one step
in the direction of a comparison with the observations. To deal fruitfully with
the presence of dark matter and other important ingredients (such as signif-
icant rotation and the possible presence of an additional disk component),
one first has to master the properties of one-component models, which, as
shown in this Chapter, turn out to exhibit a variety of interesting dynami-
cal properties. In fact, it is rewarding and a priori unexpected to find that,
as a result of a simple conjecture about the way to characterize incomplete
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violent relaxation (the addition of Q to the natural constraints under which
Boltzmann entropy is extremized; see Sect. 5.2), one-component spherical
models are identified able to fit products of N-body simulations over nine
orders of magnitude in density (see next Chapter) and, at the same time, the
observed photometric profile (over about ten magnitudes) and the inner kine-
matic profile (inside Re) of the best studied elliptical galaxy (see Sect. 5.5).
Therefore, in spite of its incompleteness, the stage reached so far is definitely
interesting from the physical point of view. Discrepancies with respect to the
observations play the welcome role of providing concrete indications about
the role of the ingredients that are a priori ignored by the purely dynamical
and highly simplified picture considered in this paper.

5.2 Model construction, solution and the rel-

evant parameter space

In the spherically symmetric limit, in order to allow for the possibility that
a stellar system is only partially relaxed, one may extremize the Boltzmann
entropy S = −

∫

f ln fd3xd3w under the constraint that the total energy
Etot = (1/3)

∫

Efd3xd3w, the total mass M =
∫

fd3xd3w, and the additional
quantity

Q =

∫

Jν|E|−3ν/4fd3xd3w (5.1)

are constant (see also Sect. 2.4). We recall that E = w2/2 + Φ and J2 =
|~r × ~w|2 represent the specific energy and the specific angular momentum
square of a single star subject to a spherically symmetric mean potential
Φ(r).

Such extremization leads to the following expression for the f (ν) distribu-
tion function:

f (ν) = A exp

[

−aE − d

(

J2

|E|3/2

)ν/2
]

, (5.2)

where ν, a, A, and d are positive real constants. This set of constants provides
two dimensional scales, e.g. a mass and radius scale, and two dimensionless
parameters, e.g. ν and γ, with

γ =
adν/2

4πGA
(5.3)

From the definition of the f (ν) distribution function (see Equation 5.2), the
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constants (A, a, d) have the following dimensions:

A = [ML−6T 3], (5.4)

a = [L−2T 2], (5.5)

d = [L−ν/2T−ν/2]. (5.6)

Therefore, as scales for mass and radius we may refer to:

Rscale = a−1/4d−1/ν , (5.7)

Mscale = Aa−9/4d−3/ν . (5.8)

Then, if we introduce the dimensionless potential Φ̂ = −aΦ, the dimen-
sionless radius r̂ = r/Rscale, the dimensionless velocity ŵ =

√
aw and a

dimensionless density ρ̂ =
∫

f (ν)d3ŵ we can construct the f (ν) models by
writing the Poisson equation cast in dimensionless quantities as:

1

r̂2

d

dr̂
r̂2 d

dr̂
Φ̂(r̂) =

1

γ
ρ̂(r̂, Φ̂), (5.9)

in which γ is considered as an eigenvalue to be determined by imposing the
two natural boundary conditions Φ̂(0) = −Ψ and Φ̂(r̂) ∼ −M̂(r̂)/(4πγr̂) as

r̂ → ∞, where M̂(r̂) =
∫ r̂

0
ρ̂(s)d3s.

We have computed the two-dimensional integral for the density with an
adaptive seven-point scheme (Berntsen et al. 1991) in order to properly han-
dle the presence of a peaked integrand for certain values of the pair (r̂, Φ̂).
The Poisson equation has then been solved with a fourth order Runge-Kutta
code by starting from r̂ = 0 with a seed value for γ and iterating the proce-
dure until the boundary condition at large radii is matched within a certain
accuracy. The general behavior of the function γ(Ψ) is similar to that of the
corresponding function for the f∞ models; after some oscillations, γ tends to
a “plateau” at large values of Ψ (as indicated by Fig. 5.1).

In order to check the accuracy of the numerical integration we have per-
formed the following tests: (1) The virial theorem is satisfied with accuracy
of the order 10−6 or better; (2) The integrated mass (from its definition) and
the mass derived from the asymptotic behaviour of the potential at large
radii are the same with accuracy of the order 10−4; (3) The expression for
Φ̂(r̂) at large radii to two significant orders in the relevant asymptotic expan-
sion has been checked to be correct with an accuracy from 10−3 to 10−4; (4)
The asymptotic analysis allows us to estimate the contributions to integrated
quantities such as M̂ and Ê external to a sphere of large radius R; this has
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been checked to help improve the numerical determination of these global
quantities1.

Then we introduce the additional dimensionless quantities r̂M = r̂M(ν, Ψ) =
rM/Rscale and M̂ = M̂(ν, Ψ) = M/Mscale for half mass radius and total mass
respectively. Recalling the expression for γ (see Equation 5.3), for given ν
we can express (A, a, d) in terms of (M, rM , Ψ):

a =
1

4πGγ(ν, Ψ)

rM

r̂M(ν, Ψ)

M̂(ν, Ψ)

M
, (5.10)

d = [4πGγ(ν, Ψ)]ν/4

(

M

M̂(ν, Ψ)

)ν/4
(

r̂M(ν, Ψ)

rM

)5ν/4

(5.11)

A =
1

[4πGγ(ν, Ψ)]3/2

(

r̂M(ν, Ψ)

rM

)3/2
(

M̂(ν, Ψ)

M

)1/2

(5.12)

We have explored the parameter space (ν, Ψ) by means of an equally
spaced grid from ν = 3/8 to ν = 1 at steps of 1/8, and from Ψ = 2 to
Ψ = 13 at steps of 0.2. A given model will be denoted by the values of the
two parameters (ν; Ψ) in parentheses.

For given (ν, Ψ), once the solution for the potential Φ(r) is obtained, it
can be inserted in the expression of f (ν), from which all the intrinsic and
observable profiles and properties of the model can be calculated.

The problem of constructing the line profiles F (w, R) for a given distri-
bution function of the form f(E, J2) is often discussed in the literature (see
Gerhard 1991, 1993; Carollo et al. 1995). The calculation requires the evalu-
ation of a triple integral (two integrations over the velocity space orthogonal
to the line of sight and one over the radial coordinate along the line of sight),
which we have performed numerically with the same adaptive algorithm used
to compute the density (Berntsen et al. 1991). In practice, we have followed
the procedure described by Gerhard (1991). The calculation of the quantities
σproj and h4 is then performed as described at the end of Sect. 5.4.3, where
they are introduced and defined.

5.2.1 The parameter Ψ and the density concentration

In the following we will often refer to the parameter Ψ as the concentration
parameter. Strictly speaking, such term is justified only at relatively large

1We estimate that the final relative error in the quantities along the equilibrium se-
quence is of the order of some parts times 10−4 for M̂ and Q̂ and some parts times 10−5

for Ê. The total energy is less sensitive to the finite radius truncation error, due to its
1/R2 convergence.
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Figure 5.1: Relation γ(Ψ) for the f (ν) family of models, for selected values
of ν. To fit the adopted frame, the γ values corresponding to ν = 3/8 have
been multiplied by a factor 1/6 and the ones corresponding to ν = 1/2 by a
factor 2/3.

values of Ψ (Ψ & 5).
A more intuitive measure of the central concentration of a model is given

by the ratio ρ(0)/ρ(rM) of the central density to the value of the density
attained at the half-mass radius rM . As illustrated in Fig. 5.2, this ratio is a
monotonic increasing function of Ψ only beyond a minimum at Ψ ≈ 4.5.

5.3 Density profiles

In this Section we start with the discussion of the properties of the density
distribution.

5.3.1 The intrinsic density profile

In the outer parts, i.e. at radii such that r & rM , the density profile (Fig. 5.3)
is basically the same for all models of the f (ν) family. In fact, the dimension-
less density associated with the f (ν) distribution function can be expressed,
at large values of r, as:

ρ̂(r̂) =
3π2

2
√

2

Γ(2/ν)

ν

1

r̂2

(

Φ̂2(r̂) + O(Φ̂3)
)

, (5.13)
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Figure 5.2: Density contrast between the center and the half-mass radius
along the equilibrium sequence for different values of ν. The solid line refers
to ν = 3/8; at fixed Ψ, models with higher values of ν are less concentrated.

where Γ(x) is the standard Gamma function (Abramowitz & Stegun 1965).
Curiously, the 1/r4 behavior is found to start from well inside the main body
of the system, not too far beyond rM , while the density distribution of the
inner half of the system is similar to that of an isothermal sphere. A power-
law of the form r−3.2 fits reasonably well the profiles in the transition region
from rM to 3rM .

As the concentration parameter Ψ increases, the point where the density
profiles merge into a profile common to all the models sets in at smaller and
smaller radii, so that for increasing values of Ψ the models appear to converge
toward a common (singular) model with a central cusp. In these respects,
the general behavior of the intrinsic density profiles is similar to that of the
f∞ models. Therefore, the behavior of concentrated models is well captured
by the following simple formula (Jaffe 1983):

ρ̂J(r̂) =
1

r̂2

1

(1 + r̂)2
, (5.14)

as shown in Fig. 5.3. Here, and in the remaining part of this subsection, a hat
symbol denotes that a quantity is expressed in a suitable dimensionless form,
obviously with no reference to the scaling procedure described in Sect. 5.2.

In turn, low-Ψ models are characterized by a prominent core. In fact,
some models have density profiles close to that of the isochrone model (Henon
1959) or of the so-called perfect sphere (ρ̂p = (1 + r̂2)−2). The core may be
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Figure 5.3: Density profile of some representative f (ν) models, with ν = 3/8,
1/2, and 1, and Ψ = 5 and 10. The most concentrated model corresponds to
(3/8; 10) and the least concentrated to (1; 5). If the scales are fixed so that
rM = 10 kpc and M = 1011 M�, the units for the density are 10−1 M�/pc3.
The density profiles overlap in the outer parts, beyond a radius that becomes
smaller and smaller as Ψ increases. In the plot we also record the ρJ profile,
shown here on an arbitrary scale for a convenient comparison.

Figure 5.4: Residuals (4ρ = ρ − ρJ) of the density profile of some concen-
trated models (Ψ = 10, for different values of ν) from ρJ (see Fig. 5.3 and
Equation (5.14)).
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Figure 5.5: Residuals of the density profile of a low-Ψ model (1; 4.6) from
the isochrone density ρI , the perfect sphere ρp, and the Plummer sphere ρP l.

even represented by the density profile of a Plummer sphere (Plummer 1915),

ρ̂P l(r) =
1

(1 + r̂2)5/2
. (5.15)

These density profiles are mentioned to better illustrate the properties of
the mass distribution of the f (ν) models in terms of well-known profiles (see
Fig. 5.5). For a discussion of the merits and limitations of physically based
models (such as the f (ν) models) with respect to other models constructed on
the basis of analytical convenience (e.g., see Merritt 1985, Hernquist 1990),
the reader is referred to the review article by Bertin & Stiavelli (1993). On
the other hand, in relation to phase-space properties, we should emphasize
the following point. As will be clear from Sect. 5.4, in the approach adopted
in this Thesis (in which the distribution function is constructed from physi-
cal arguments) the final velocity dispersion and pressure anisotropy profiles
cannot be set independently, but follow from the self-consistent solution. In
other words, all the “observable” profiles can be seen as consequences of the
physical framework considered. This is in sharp contrast with other model-
ing procedures that are descriptive, rather than predictive (e.g., see Merritt
1985).
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Figure 5.6: Best fit value of the index n (of the R1/n law) associated with
the projected density profile of the f (ν) models, for selected values of ν.

5.3.2 The projected density profile

We have then proceeded to compute a library of projected density profiles
(which may be compared to observed luminosity profiles, under the assump-
tion of a constant M/L ratio). A first way to characterize these profiles is to
fit them with the R1/n law (Sersic 1968). Such fit has been performed over
a very wide radial range, from 0.1Re to 10Re. It shows that the f (ν) family
is well represented by the R1/n law, with the index n ranging from 2.5 to 8.5
(see Fig. 5.6; the slightly bumpy behavior of the ν = 3/8 curve just reminds
us of the uncertainties associated with the best-fit determination of n). The
n = 4 behavior, characteristic of the de Vaucouleurs law (de Vaucouleurs
1948), is mostly associated with concentrated high-Ψ models, but we note
that many intermediate-Ψ models also have the same structural property.
The residuals from the R1/n best fit (see Fig. 5.7) are typically within 0.05
mag for concentrated models, while at low values of Ψ they are within 0.2
mag; the general behavior can be compared with that of the f∞ models (see
Fig. A.1 in Bertin et al. 2002).

5.4 Phase space properties

Here we describe the properties of the f (ν) models related to the velocity
space.
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Figure 5.7: Residuals µ − µ1/n, in magnitudes, obtained by fitting the R1/n

law to the projected density profiles of the f (ν) models for ν = 1/2 and
selected values of Ψ. The quality of the fit is excellent for concentrated
models (Ψ > 7).

5.4.1 Pressure anisotropy profiles and global anisotropy

indicators

The pressure anisotropy of the models can be described by means of the
anisotropy profile α(r), defined as α(r) = 2− (〈w2

θ〉+ 〈w2
φ〉)/〈w2

r〉. This func-
tion, illustrated in Fig. 5.8, shows that the cores are approximately isotropic
and that in the outer parts the pressure is mostly in the radial direction,
in line with the qualitative expectations of the violent relaxation scenario
(Lynden-Bell 1967). Higher values of ν are associated with a sharper transi-
tion from central isotropy to radial anisotropy.

The degree of anisotropy globally present in our models can be charac-
terized in terms of the ratio 2Kr/KT , where Kr is the total kinetic energy
associated with the radial degree of freedom, and KT the corresponding quan-
tity related to the two tangential directions. All models present an excess
of kinetic energy in the radial direction, as illustrated in Fig. 5.9. The ratio
2Kr/KT is greater than ≈ 1.3 over the whole sequence and becomes larger
than 2 in the low-Ψ region. As a general trend, at fixed Ψ, f (ν) models with
higher values of ν are more isotropic.

In addition to 2Kr/KT , as a global anisotropy indicator we can also re-
fer to the parameter rα/rM (see Fig. 5.9); here the radius rα denotes the
anisotropy radius, defined from the relation α(rα) = 1. In contrast with the
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Figure 5.8: Anisotropy profiles α(r) of Ψ = 5 models for different values of
ν.

Figure 5.9: Global anisotropy of the f (ν) models shown in terms of the pa-
rameter 2Kr/KT (group of curves starting from the top left) and of the
ratio rα/rM (anisotropy radius to half-mass radius; group of curves starting
from the bottom left) as a function of Ψ. For low values of Ψ the global
anisotropy 2Kr/KT is basically independent of ν. At fixed value of Ψ the
global anisotropy decreases with ν.
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Figure 5.10: Intrinsic “pressure” profiles (σ2
T /2 = (〈w2

θ〉 + 〈w2
φ〉)/2 and σ2

r =

〈w2
r〉) for selected f (ν) models with ν = 1/2.

f∞ models, for which rα ≈ 3rM for relatively large values of Ψ, here we find
that concentrated models are characterized by rα ≈ rM .

5.4.2 Velocity dispersion and projected velocity dis-

persion profiles

As we have seen, the models can be characterized by significant “pressure”
anisotropy. This can be illustrated directly by the intrinsic velocity dispersion
profiles, for which one may find significant differences between the tangential
σ2

T /2 and the radial dispersion σ2
r as far in as r ≈ 0.1 rM (see Fig. 5.10).

These velocity space properties, in combination with the density distribution,
give rise to the projected velocity dispersion profiles (calculated from the
line profiles, as described in the next subsection), which may eventually be
compared with the observed kinematical profiles; some projected velocity
dispersion profiles are shown in Fig. 5.11.

5.4.3 Line profiles

Pressure anisotropy can affect the shape of the velocity distribution inte-
grated along a given direction, which can be tested observationally by study-
ing the profiles of the lines used to determine the observed velocity dispersion.
In this context, since observational limitations prevent us from obtaining ac-
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Figure 5.11: Projected velocity dispersion profile for selected f (ν) models. If
the scales are fixed so that rM = 10 kpc and M = 1011 M�, the velocity
dispersion σproj is given in units of 207.4 km/s.

curate measurements of line profiles, comparisons between data and models
are often carried out in terms of certain shape parameters, which measure the
deviations from a Gaussian profile (e.g., see Gerhard 1991; de Zeeuw et al.
2002). In view of this approach, we have first computed the line profiles for
a number of models, following the procedure described in Sect. 5.2 and then
we have extracted from them the related value of the h4 parameter (being
non rotating and spherically symmetric, the f (ν) models are associated with
line profiles characterized by vanishing h3).

To extract the velocity dispersion σproj and the value h4 we fit the line
profile F (w, R), at fixed R, with a Gaussian corrected by a fourth order
Gauss-Hermite polynomial (Abramowitz & Stegun 1965):

F (w, R) = F0 exp [−(w/σproj)
2/2] × (5.16)

{

1 + h4 [12 − 48(
w

σproj

)

2 + 16
( w

σproj

)

4
]

}

,

where F0, σproj , and h4 are free parameters. The fit has been performed with
a Simulated Annealing method (Press et al. 1986).

In general, the deviations from a Gaussian are modest, ≈ 5%, and reduce
to within 1% for R . Re. The h4 parameter takes on slightly negative values
at the center of the system and then becomes positive in the outer parts (see
Fig. 5.12), in line with the results found by Gerhard (1991).
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Figure 5.12: Profiles of the h4 parameter for selected f (ν) models with ν = 3/4
and different values of Ψ (the Ψ = 2 model is denoted by squares, Ψ = 6 by
triangles, and Ψ = 10 by stars).

5.4.4 The phase space densities N(E, J 2) and N(E)

As discussed in Sect. 3.8, in view of a comparison with N-body simulations,
a physically interesting way to characterize the phase space properties of the
f (ν) models is in terms of the N(E, J2) and N(E) densities, defined in such
a way that M =

∫

N(E)dE =
∫

N(E, J2)dEdJ2. Therefore, the relation
between f (ν)(E, J2) and the phase space density N(E, J2) is given by the
Jacobian of the transformation from d3~xd3 ~w to dEdJ2:

N(E, J2) =
2πf (ν)(E, J2)

Ωr(E, J2)
, (5.17)

where Ωr(E, J2) is the radial frequency of stellar orbits in the given potential
Φ(r) (see Equation 3.48 for the definition of Ωr). At variance with the f∞
models, the f (ν) models exhibit a singular behavior of N(E, J2) near the
origin in the dEdJ2 phase space (see Fig. 5.13).

5.5 A first comparison with the observations

The results in terms of the R1/n law described in Sect. 5.3.2 already show
that the f (ν) models possess realistic density profiles. This encouraged us
to consider a direct comparison with an observed galaxy. For the purpose,
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Figure 5.13: The phase space density N(E, J 2) for the (1/2; 6.2) f (ν) model.
The graph has been obtained by a Monte Carlo sampling of the distribution
function with 2 × 106 points.

Figure 5.14: Comparison between the photometric profile of NGC 3379 and
the (1/2;9.4) model of the f (ν) family. The photometric profile in B is taken
from de Vaucouleurs & Capaccioli (1979). Other members of the family
(e.g. the (1;9.2) model) could better reproduce the observed data especially
at large radii, but they would perform less well on the velocity dispersion
profile.
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Figure 5.15: Kinematic data for NGC 3379 described in terms of the (1/2;9.4)
model of the f (ν) family. The inner data (plain error bars) are taken from the
stellar spectroscopy of Statler & Smecker-Hane (1999), while the outer data
(crosses with error bars) refer to the binned velocity dispersion determined
from the study of planetary nebulae (Romanowsky et al. 2003).

we picked the round elliptical galaxy NGC 3379, which apparently does not
possess significant amounts of dark matter (Saglia et al. 1992, Romanowsky
et al. 2003; note that the f (ν) models are one-component models and thus are
not applicable to systems with prominent dark halos). This galaxy has an
R1/4 luminosity profile (de Vaucouleurs & Capaccioli 1979, Capaccioli et al.
1990). For the kinematics, we considered the data of Statler & Smecker-Hane
(1999) and recently published data-points based on planetary nebulae that
extend well beyond Re (Romanowsky et al. 2003).

The f (ν) model that best describes the data is shown in Figs. 5.14-5.15.
From such model, by adopting a distance of 11 Mpc for the galaxy and
an absolute magnitude in B band MB = −20.0, we obtain a mass-to-light
ratio M/LB = 4.7 in solar units. Population synthesis models for NGC 3379
predict a mass-to-light ratio between 4 and 9 (Gerhard et al. 2001). In
comparison, Romanowsky et al. (2003) report a mass-to-light ratio M/LB =
7.1 ± 0.6.
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5.6 Discussion and conclusions

In this Chapter we have studied the structural and dynamical properties of
a two-parameter family of models of partially relaxed stellar systems. These
models had been proposed earlier (Stiavelli & Bertin 1987) as physically rel-
evant to the galaxy formation scenario based on collisionless collapse and
incomplete violent relaxation. They had been noted to possess some realis-
tic properties (for ν in the range 1/2 − 1 and for relatively large values of
Ψ). However, they had been left basically aside and not studied further in
systematic detail. Additional physical interest was noted recently (Bertin &
Trenti 2003), in an investigation focused on their thermodynamic properties,
in relation to the paradigm of the gravothermal catastrophe. Because of
such physical interest, we have decided to undertake a thorough comparison
between the models and the products of collisionless collapse, as generated
in N-body simulations. Such a comparison will be the subject of the next
Chapter, of which the present analysis forms the necessary basis. In the next
Chapter we will consider a relatively large set of simulations of collisionless
collapse, starting from a variety of initial conditions. We will address the is-
sue of the conservation of Q and identify the range of ν for which the global
quantity is best conserved. Furthermore, we will show that in many cases the
f (ν) models can provide a surprisingly good fit to both the density and the
pressure profiles, over nine orders of magnitude of the density distribution
(see Sect. 6.6). The best-fit models will turn out to be close to marginal
stability with respect to the radial orbit instability.

Here we have shown that the family of f (ν) models exhibits a variety of
structural properties, within a common general behavior. The model char-
acteristics can be summarized by referring to three separate regimes: low-Ψ
models (typically, Ψ < 4), intermediate-Ψ models (typically, 4 < Ψ < 8),
and high-Ψ models (typically, Ψ > 8). In practice, the values of Ψ that mark
the transition between different regimes do not depend significantly on the
value of ν, at least in the range explored in this paper (i.e., from ν = 3/8 to
ν = 1).

In the intermediate-Ψ and the high-Ψ regimes the concentration ratio
ρ(0)/ρ(rM) increases monotonically with Ψ; models with lower values of ν
have larger values of ρ(0)/ρ(rM) (by up to one order of magnitude at given
Ψ, in the explored range of ν). In the same regimes, as Ψ increases, the
density distribution converges onto a common profile characterized by an
approximate r−4 behavior at r > rM and by an approximate r−2 behavior at
r < rM , with an inner core that becomes smaller and smaller. In contrast,
models in the low-Ψ regime have a substantial core, comparable in structure
to that of a Plummer or of an isochrone model. In general, the projected
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density distribution of the models is well fitted by the R1/n law, with n
ranging from 2.5 to 8.5. Typically, high-Ψ models are accurately described
in terms of the R1/4 law.

The models are all characterized by significant radially-biased pressure
anisotropy. In terms of the global anisotropy ratio 2Kr/KT , at given Ψ
models in the low-Ψ regime have similar amounts of pressure anisotropy,
which increases rapidly as Ψ decreases. In practice, all low-Ψ models should
all be unstable with respect to the radial-orbit instability (see Sect. 4.2).
Intermediate-Ψ and high-Ψ models appear to be safely stable, but they may
be only marginally so for the lowest value of ν that we considered. This
latter remark also explains why we have decided not to move below ν = 3/8,
given the fact that radial pressure anisotropy is larger for lower-ν models.
In terms of velocity dispersion profiles, to some extent pressure anisotropy
is already significant at r ≈ 0.1 rM , even for stable models. However, out to
r ≈ rM the line profiles of stable models deviate very little from a Gaussian,
with h4 within the 5% level.

Finally, a comparison with the observed surface brightness and kinemat-
ical profiles for the galaxy NGC 3379 has shown some merits and some limi-
tations of the one-component family of f (ν) models when applied to observed
objects. In particular, it is interesting to see that, within the extremely ide-
alized framework at the basis of the construction of these models (see also
the general comments made in Sect. 5.1.1), the observed luminosity profile is
very well reproduced over about ten magnitudes; at the same time the models
can well reproduce the inner part of the relevant kinematical profile, inside
Re. This comparison supports the view that the f (ν) models may be help-
ful to describe the luminous component of elliptical galaxies. The obvious
limitations of the one-component models that we are considering are clearly
brought out by their inadequacy to capture the change in the observed kine-
matical profile occurring around Re and thus their failure to reproduce such
profile in the outer parts. This is interpreted as a signature of the presence
of an additional component that our models, in the form developed so far, a
priori ignore.



Chapter 6

Comparison with the products
of collisionless collapse

In this Chapter we present a successful comparison between the f (ν) models
and the end products of simulations of collisionless collapse. The content of
this Chapter has been published in Trenti, M., Bertin, G., & van Albada,
T.S. (2005) A&A 433, 57.

6.1 Introduction

The collapse of a dynamically cold cloud of stars can lead to the formation of
realistic stellar systems, with projected density profiles well represented by
the R1/4 law (van Albada 1982). The theoretical framework for the mecha-
nism of incomplete violent relaxation that governs this process of structure
formation was proposed by Lynden-Bell (1967), who argued that fast fluc-
tuations of the potential during collapse would lead to the formation of a
well-relaxed isotropic core, embedded in a radially anisotropic, partially re-
laxed halo. This general picture served as a physical justification for the
construction of the so-called f∞ models, which indeed recovered the R1/4 law
and, suitably extended to the case of two-component systems (to account for
the coexistence of luminous and dark matter), led to a number of interest-
ing applications to the observations (see Bertin & Stiavelli 1984, 1993, and
references therein).

An attempt at deriving the relevant distribution function directly from
the statistical mechanics of incomplete violent relaxation suggested that, in
addition to the f∞ models, one could consider alternative models, called the
f (ν) models (Stiavelli & Bertin 1987), with similar overall characteristics.
The key ingredient for the construction of the f (ν) distribution function is
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the conjecture that a third quantity Q, in addition to the total mass M
and the total energy Etot, is approximately conserved during the process of
collisionless collapse (of course, we are referring to systems characterized by
vanishing total angular momentum, Jtot = 0). This quantity is introduced to
model the process of incomplete violent relaxation, ensuring a radially biased
pressure tensor and a 1/r4 density profile in the outer parts of the system.
Because of their relatively straightforward derivation from the Boltzmann
entropy, these models were revisited recently (Bertin & Trenti 2003) and
used to demonstrate the onset of the gravothermal catastrophe (Lynden-Bell
& Wood 1968) for such a one-parameter sequence (at fixed ν) of anisotropic
equilibria; a preliminary inspection of the general characteristics of the f (ν)

models then convinced us that, with significant advantage over the f∞ mod-
els, they might also serve as a good framework to interpret the results of
simulations of collisionless collapse not only qualitatively, but also in quan-
titative detail. Therefore, we proceeded to examine their intrinsic properties
systematically (Trenti & Bertin 2005; see also Chapter 5), and we will take
advantage of that work for the study presented here.

We describe the results of a relatively wide set of numerical simulations
of collisionless collapse, aimed at studying the phase space evolution and
settling of the system during violent relaxation, and we then compare in
detail the properties of the quasi-equilibrium end-products thus obtained
with those of the f (ν) models. In particular, we discuss the role played by
the initial conditions and find that a certain degree of clumpiness is required
for an efficient mixing in the single-particle angular momentum distribution;
this form of relaxation turns out to be crucial for a good match with the f (ν)

family of models. The Q conservation is then studied directly by looking
at its time evolution. For a significant range of collapse factors, virial ratio
u = (2K/|W |)t=0, an approximate conservation is indeed observed. The
end-products (and thus the best-fitting models) tend to be characterized by
a value of the global anisotropy parameter close to marginal stability with
respect to the radial orbit instability (Polyachenko & Shukhman 1981).

The Chapter is organized as follows. After introducing our basic models
and notation (Sect. 6.2), in Sect. 6.3 we discuss the initial conditions adopted
for the simulations of collisionless collapse, with special attention to the issue
of clumpiness in phase space. In Sect. 6.4 we characterize the end-products of
the simulations in terms of a few key indicators (i.e., central concentration,
global anisotropy, density and anisotropy profiles, deviations from spheri-
cal symmetry) and describe their dependence on the initial conditions. In
Sect. 6.5 we examine the hypothesis of the approximate conservation of Q.
We then move, in Sect. 6.6, to the comparison of the end-products of the
simulations with the f (ν) models (in terms of density and anisotropy profiles
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and directly in phase space). In Sect. 6.7 we provide additional comments
on the issue of clumpiness in phase space. Finally, in Sect. 6.8, we draw the
main conclusions from this study.

6.2 f (ν) models, units, and notation

The f (ν) models (supported by the one-particle distribution function f (ν) =
A exp [−aE − d(J2/|E|3/2)ν/2], where a, A, d, and ν are positive constants)
represent equilibrium configurations designed to describe the products of
incomplete violent relaxation. They are characterized by a density profile
ρ(r) falling off as 1/r4 at large radii and as 1/r2 in the inner part of the
system, outside a central “core”. The size of the core becomes smaller as the
concentration parameter Ψ increases. On the large scale, apart from such
freedom in central concentration and core size, the shape of the density profile
is basically independent of the (ν; Ψ) parameters (see Fig. 5.3). Interestingly,
although this feature had not been imposed at the beginning (when the
function f (ν) is constructed), the projected density distribution of the f (ν)

models is typically well fitted, on the large scale, by the R1/4 law; residuals
in the fit are reduced if one considers the generalized R1/n law (with n a free
parameter; Sersic 1968), depending on Ψ (see Figs. 5.6-5.7).

In contrast with other approaches (e.g., see Osipkov 1979 and Merritt
1985) where the anisotropy profile is assigned a priori, in the f (ν) models
the velocity dispersion anisotropy profile α(r), defined as α(r) = 2− (〈w2

θ〉+
〈w2

φ〉)/〈w2
r〉, must be computed a posteriori and its shape depends on ν and

Ψ (see Fig. 5.8). The structure of the distribution function only guarantees
that the models match the asymptotic requirements suggested by the picture
of incomplete violent relaxation, i.e. at large radii, where the pressure is
radial, and in the central regions, where the pressure is isotropic. The global
anisotropy, measured by the quantity 2Kr/KT , i.e. twice the ratio of the
radial to the tangential kinetic energy, depends on the choice of (ν; Ψ) and
correlates with the central concentration (e.g., see Fig. 5.9). Models with
Ψ . 4 are characterized by an excessive degree of radial anisotropy (i.e.
2Kr/KT & 1.7), and are thus unstable.

The physical system of units adopted is defined by 10 kpc for length,
1011 M� for mass, and 108 yr for time. In this system, natural for studies
on galactic scales, velocities are measured in units of ≈ 97.8 km/s and the
value of the gravitational constant G is 4.4971.

The majority of simulations consists of runs starting from 20 cold clumps
of 16 kpc radius in a sphere of 40 kpc radius, with u = (2K/|W |)t=0 in
the range 0.05-0.25. After the collapse the system has a half-mass radius
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around 8 kpc. The total mass of the system is 2 × 1011 M�. The dynamical
time, which we define as td = GM5/2/(−2Etot)

3/2, is therefore typically ≈
1.2×108 yr, i.e. 1.2 in our units. As a result, when we stop the simulation at
time 80, the system has evolved for several tens of dynamical times. In any
case, we should recall that the results obtained are scale-free, that is they
can be rescaled to other choices of mass and radius if so desired.

6.2.1 The code

The code used in the present study is our new particle-mesh code, described
in Chapter 3. For completeness, we have also run a number of comparison
simulations with the fast code developed by Dehnen (2000).

6.3 Choice of initial conditions

If the initial conditions are not too artificial, during the process of colli-
sionless collapse violent relaxation can take place, with significant mixing in
phase space, and wipe out much of the details that characterize the initial
conditions. In reality, violent relaxation is incomplete. Therefore, the final
state is that of an approximate dynamical equilibrium characterized by an
anisotropic distribution function, different from a Maxwellian (which would
correspond to thermodynamic equilibrium). Because of such incomplete re-
laxation, the end-products of the simulations do conserve some memory of
the initial state.

6.3.1 Uniform initial conditions, clumpy initial condi-

tions, and the cosmological framework

Some of the papers addressing the problem of collisionless collapse start
from “uniform” initial conditions in position and velocity space. For ex-
ample, Aguilar & Merritt (1990) assume an initial 1/r density profile and
then explore the way the collapse proceeds by varying, in addition to the
initial virial ratio u = (2K/|W |)t=0, the shape of the initial density profile
(by shrinking the system along one axis) and the amount of rotation. Udry
(1993) starts from uniform cold spheres, and also varies, in addition to the
above-mentioned parameters, the initial anisotropy content 2Kr/KT . Re-
cently, Boily et al. (2002), starting from cold uniform spheres or spheroids,
focus on the effects introduced by the number of particles used in the simu-
lation.
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A few earlier investigations (van Albada 1982; McGlynn 1984; May & van
Albada 1984; Londrillo et al. 1991) compared “clumpy” to “uniform” (or “ho-
mogeneous”) initial conditions, showing that clumpy initial conditions lead
to end-states with projected density distributions well fitted by the R1/4 law
(although Aguilar & Merritt 1990 point out that, for very small values of u,
the R1/4 law is approximately recovered even for homogeneous initial con-
ditions). [Udry (1993) argues that starting from a multi-component initial
mass spectrum for the simulation particle distribution can be an alternative
way to represent a clumpy initial density configuration. However, the intro-
duction of simulation particles so massive as to be representative of clumps
would introduce effects of dynamical friction that per se would go beyond
the picture of collisionless violent relaxation.]

Recently Roy & Perez (2004) studied the outcome of violent collapse
starting from an initial uniform background with the possible addition of
small clumps of stars. Although their clumpy initial conditions are rather
different from those considered here, they also noted that clumpy simulations
lead to steep density profiles with small cores.

As will also be demonstrated later on (see Sect. 6.4.3), the key point that
distinguishes clumpy from uniform initial conditions is that, in general, only
the former allow significant mixing in phase space, thus making it possible
for violent relaxation to proceed properly. Here we will thus focus on sim-
ulations starting from clumpy configurations. As discussed below, for the
present study we do not require that our initial clumps be in internal dy-
namical equilibrium, since their purpose is to avoid excessive homogeneity in
the (E, J2) phase space (see also Appendix). In particular, the clumps are
not intended to be a realistic representation of possible conditions at a given
epoch in the past. In fact, the effects of violent relaxation become impor-
tant in a few dynamical times, independently of the precise epoch when the
process is imagined to occur.

To be sure, to identify a realistic set of initial conditions one should
consider a satisfactory cosmological framework. We plan to do this in fu-
ture investigations, because this would lead us well beyond the scope of the
present work. In this respect, the use of clumps is already one important step
forward with respect to the use of homogeneous initial conditions. Eventu-
ally, we should devise a method for determining a “spectrum” of clumps with
properties compatible with the expectations of current cosmological scenarios
(see also Katz 1991, and further discussion in Sect. 6.7). For the moment,
we are satisfied with identifying the initial conditions under which sufficient
mixing in phase space is guaranteed. Note that cosmologically oriented simu-
lations are centered on the clustering and growth of dark matter halos, while
in this Thesis, given our focus on the R1/4 law and on the deviations from it,
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we have in mind mostly luminous matter.

6.3.2 Setting up clumpy initial conditions

In a clumpy initial state the N particles are grouped in NC spherical clumps,
each of them containing Ni stars, so that N =

∑NC

i=1 Ni, with 〈Ni〉 = N/NC .
Within each clump the star distribution is homogeneous. The centers of mass
of the clumps are distributed uniformly inside a sphere of radius R, which
defines the size of the system at the beginning of the simulation. The clump
radius is RC , with RC < R, but such that NC × R3

C > R3 (this condition
ensures that the sphere of radius R is well filled by stars). The initial kinetic
energy may be associated with the ordered motion of the center of mass of
each clump (this is our default choice for the simulations of type C described
below; in this case the velocity is assigned by drawing from an isotropic
distribution) or with the random motions of the stars within the clump (in
these cases we add a subscript h to the simulation label; here the center of
mass of each clump is taken to be at rest). In general, with this choice of
initial conditions the clumps are not in internal dynamical equilibrium. We
note that when the number of clumps used is low, the initial configuration
may deviate significantly from spherical symmetry (with projected shapes
up to those of an E3 galaxy). Formally the limits NC −→ N and NC −→ 1
both lead to homogeneous initial conditions.

In the case of homogeneous initial conditions (simulations of type U and
S), which we run for comparison, we employed two kinds of distributions:
(1) a constant density within a sphere of radius R; (2) a symmetrized version
of a given clumpy configuration (simulations of type S). The symmetrization
process in (2) is performed by accepting the radius and the magnitude of the
velocity of each particle, following the procedure for initial clumpy conditions,
but by redistributing the angular variables uniformly.

In principle, we have a wide parameter space to explore, because we have
to deal with the initial virial ratio u, the number and size of the clumps, the
cold/hot choice for the initial kinetic energy distribution (and the interme-
diate range of possibilities), the spatial distribution of the centers of mass
of the clumps and of the stars within each clump. As noted earlier (e.g.,
see Londrillo et al. 1991), we anticipate that the main controlling physical
parameter is the initial virial ratio.

Table 6.1 lists for each simulation the following information: the number
N of particles used, the number of clumps NC , the initial virial ratio u, the
initial values of the shape parameters ε0, η0 (based on the lengths of the
axes of the homogeneous ellipsoid associated with the inertia tensor, taken
to be in the order a ≥ b ≥ c, so that η = c/a and ε = b/a; the inertia
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Figure 6.1: Typical projected distributions in position (left) and velocity
(right) space for hot (upper panels, run C4.1h) and cold (lower panels, run
C4.1) clumpy initial conditions.
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tensor is referred to the particles within a sphere of radius 3rM), and the
initial concentration Cρ0 = (ρ(0)/ρ(rM))t=0. As a summary for the notation
used, we note the following. We have divided the set of clumpy simulations
in five subsets, from C1 to C5. The simulations belonging to C1 start with
105 particles in 10 clumps, the positions of which are fixed. The C2 series
is a high resolution (8 × 105 particles) version of C1, but uses instead 20
clumps. In the C3 (high resolution, 8× 105 particles) and C4 (105 particles)
series we use different seeds for the initial positions of the clumps and we
also change other parameters as described in Table 6.1. Runs CV 5.1 and
CP5.2∗ are test runs specially performed to clarify some issues related to
clumpiness (see Appendix). CV 5.1 has clumpy conditions in velocity space
as in run C4.1, but uniform homogeneous conditions in position space; in
turn, CP5.2∗ has a clumpy configuration in position space (40 clumps of
6 kpc, with a filling factor NC × R3

C/R3 = 0.135) and uniform conditions
in velocity space. Runs U refer to uniform homogeneous spheres (here the
seed for the random numbers is not relevant given the high symmetry of the
configuration) and the S series refers to the symmetrized runs.

6.4 The products of collisionless collapse

Table 6.3 lists for each simulation the following information: the relative mass
loss for the end-products ∆M = (M0 − M)/M0, the relative conservation of
the global quantity Q, with ∆Q = |Q0 − Q|/Q0 referred to ν = 1/2 unless
otherwise noted, the concentration Cρ = ρ(0)/ρ(rM) of the end-products in
terms of the ratio of the central density to the density at the half-mass radius,
the global anisotropy parameter κ = 2Kr/KT , the anisotropy radius (defined
by the relation α(rα) = 1) relative to the half-mass radius rα/rM , and the
final shape parameters ε and η. All quantities are referred to the final system
of bound particles.

6.4.1 General properties

From the results reported in Table 6.3 we may infer some empirical trends.
In particular, here we focus on: (1) central concentration; (2) anisotropy
content; (3) deviations from spherical symmetry; (4) mass loss. Density
and anisotropy profiles will be discussed and compared with our theoretical
models in Sect. 6.6.

We have run two series of simulations (type C1 and C2) for which the
initial particle positions and velocities are kept fixed within each series, except
for a constant scaling factor in the velocities able to lead to different values
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Figure 6.2: Correlations between final concentration Cρ and initial virial ratio
u (left), and between final ellipticity η and final global anisotropy 2Kr/KT

(right). Symbols mark the various sets of simulations as follows: filled squares
for C1, filled triangles for C2, open pentagons for C3, open squares for C4,
crosses for U , and stars for S.

of u (from 0.05 to 0.275 for C1 and from 0.06 to 0.24 for C2). This procedure
thus allows us to explore the role of the initial virial ratio by keeping all other
conditions strictly fixed.

The central concentration resulting from the collapse is expected to cor-
relate with u. Londrillo et al. (1991) proposed a simple criterion to set an
upper limit to the expected value of the central concentration by imposing
the conservation of the maximum density in phase space. They argued that,
for the collapse of an initially homogeneous system, the central concentration
measured in terms of the ratio rM/r0.1 (of the half-mass radius to the radius
of the sphere containing one tenth of the total mass) should scale as 1/u.
Our C1 and C2 simulations follow qualitatively the proposed trend. How-
ever, since relaxation is incomplete, it is natural to find that other factors,
in addition to the value of u, can contribute to determine the properties of
the final states. In fact, if we do not restrict our attention to the C1 and C2
sequences only and consider instead the entire set of simulations, we see that
the correlation between u and Cρ becomes weaker (see Fig. 6.2).

Differently from C1 and C2, the sets of C3 and C4 simulations, starting
from different spatial configurations (different number and size of clumps,
different seed in the random number generator), allow us to study other pos-
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sible correlations, in particular those between initial and final concentration
and between final concentration and initial deviations from spherical sym-
metry; the latter correlation was noted by Boily et al. (2002), starting from
homogeneous spheroids. Again, if we include the entire set of simulations,
the correlations that we find are, in general, relatively weak.

The final global anisotropy of the simulations (see the quantity κ in Ta-
ble 6.3) is also weakly correlated with u, with larger values of u preferentially
associated with lower levels of radial anisotropy. The series C1 has a system-
atic, but curiously non-monotonic trend, while C3 and C4 show that other
factors, in addition to u, are important.

As to the shapes of the products of collisionless collapse, we note a rela-
tively strong correlation (see Fig. 6.2) between the final shape (as measured
by η) and the final level of global anisotropy (as measured by 2Kr/KT ).
This is likely to be related to the action of the radial orbit instability dur-
ing collapse. In particular, for the C2 series lower values of u lead to more
anisotropic and more flattened end products; the effect in the C1 series is
less pronounced. Of course, the issue of the final shapes produced by col-
lapse has been addressed by several investigations in the past, especially with
the hope of establishing whether related dynamical mechanisms can account
for the observed morphologies of elliptical galaxies (for simulations in the
cosmological context, see Warren et al. 1992; see also Udry 1993).

Initial conditions with a small number of clumps, as considered here, often
show significant deviations from spherical symmetry (from Table 6.1 we see
that η0 can be as low as 0.7). Curiously, the final value of η may even slightly
exceed the value of η0, thus showing that collapse may sometimes push the
system toward spherical symmetry, not necessarily away from it.

Collisionless collapse can produce significant amounts of unbound parti-
cles and consequently give rise to mass loss. This effect is particularly severe
in the cases where the collapse originates from a homogeneous sphere (see
also Londrillo et al. 1991); here the system may lose up to one third of the
mass (see run U6.1). Clumpiness appears to have a stabilizing effect with
respect to mass loss; in fact, the mass lost is less than 7% even for run C1.1
characterized by u = 0.06. On the other hand, symmetrized clumpy initial
states, of type S, are also found to evolve with limited mass loss. [Since
the nature of the gravitational forces is mainly radial for both the collapsing
homogeneous spheres (U simulations) and symmetrized clumpy configura-
tions (S), the different amounts of mass loss might be related to the different
radial density distributions for the two types of run. In fact, the effect of
superimposing several clumps of particles creates a density profile decreasing
approximately linearly with radius.]
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6.4.2 The role of the radial orbit instability

Spherical stellar systems with an excess of radial orbits (2Kr/KT > 1.7±0.25)
are expected to be unstable and to evolve rapidly, on the dynamical time-
scale, into ellipsoids; the precise value for the onset of the radial-orbit instabil-
ity depends on the detailed structure of the system considered (Polyachenko
& Shukhman 1981; see Palmer 1993, and references therein). The radial
orbit instability is thought to act efficiently during collisionless collapse and
is then argued to be the leading mechanism that makes cold and spherical
initial configurations evolve into generally triaxial configurations (Aguilar &
Merritt 1990; Polyachenko 1992). The instability may also be responsible for
a reduction of the value of the central concentration reached during collapse
(Merritt & Aguilar 1985); in fact, the evolution of concentrated anisotropic
systems into ellipsoids is accompanied by a drastic softening of the density
distribution (Stiavelli & Sparke 1991). As is the case for many other unstable
systems, evolution tends to remove the source of instability and thus, in our
case, to decrease the initial excess of radial orbits. Therefore, the threshold of
instability should provide an upper limit to the global anisotropy of objects
produced by collisionless collapse.

Our simulations largely confirm the general validity of this picture and
the general applicability of the Polyachenko & Shukhman (1981) criterion
(however, see Chapter 4). In particular, simulations C2.3 and C2.4 are char-
acterized by a value of κ > 1.7 and lead to more flattened configurations
than C2.1 and C2.2. Also the drop in the central concentration in simula-
tion C1.10 with respect to C1.9 might be related to the action of the radial-
orbit instability. Most of the end states are characterized by relatively high
anisotropy (generally κ > 1.5, and values around 1.7 are not infrequent) and
thus it seems that evolution tends to prefer a state very close to the stability
boundary (as studied for the f (ν) family of models in Sect. 4.2 by means of
an extensive set of simulations). [An interesting finding is that symmetrized
initial conditions, although artificial, can lead to spherical final states still
able to sustain a large number of radial orbits (κ ≈ 2.1 for simulation S4.2).
See also Chapter 4].

6.4.3 Angular momentum mixing

Simulations with homogeneous initial conditions generate quasi-equilibrium
final configurations that not only suffer from significant mass loss, but also ex-
hibit unusual features in their anisotropy profiles (see Sect. 6.6.3 and Fig. 6.6).

If the degree of symmetry in the initial conditions is excessive, little room
is left for relaxation in the (E, J2) phase space even if the process itself
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Figure 6.3: Scatter plot (final vs. initial values) for the single-particle specific
angular momentum. Comparison between a clumpy simulation (run C4.2;
left panel) and its symmetrized version (run S4.2; right panel). Units for J
are pc2/yr, see Sect. 6.2.

may be violent and lead to mass shedding. This is confirmed by the fact
that little or no mixing is observed in the single-particle angular momentum
distribution for homogeneous simulations, as reported in Fig. 6.3 (see also
May & van Albada 1984). In fact, if the system evolves remaining close to
spherical symmetry, the conservation of single particle angular momentum
imposes severe constraints on the dynamical properties of the end-state of the
collapse. On the other hand, a certain degree of clumpiness, even if limited to
either position or velocity space, leads to angular momentum mixing. This is
confirmed by two test simulations, CV 5.1 and CP5.2∗, where mixing indeed
turns out to be quite efficient and leads to J relaxation much like in the left
panel of Fig. 6.3 (see also Appendix).

Clumps thus help the system reach a “universal” final state from a variety
of initial conditions, which can explain the similarity of the density profiles
observed in the final products of collapse simulations (see Sect. 6.6).

6.4.4 Dependence on the degree of clumpiness

A few simulations with a large number of clumps (400 in C4.5 and 80 in C4.3)
and a spatial filling factor above unity confirm that, in the limit of large NC ,
the evolution of the system approaches that of collapse simulations based on
homogeneous conditions, with end-states characterized by a flat core and a
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Figure 6.4: Evolution of the virial ratio during run C4.4, characterized by
the presence of many small cold clumps. The insert box zooms in on the
evolution at the beginning of the simulation, when a first collapse occurs,
followed by an expansion of the clumps while collapsing toward the center of
mass of the system.

low anisotropy content. A number of clumps of order 10 to 20 thus seems to
be optimal for an efficient violent relaxation.

Even when limited to either position or velocity space, clumpiness can be
important and still lead to end-states with general properties similar to those
of the standard clumpy simulations considered in this paper (see CV 5.1 and
CP5.2 entries in Tables 6.1-6.3 and Sect. 6.6.5).

We also studied the dependence of the results of collisionless collapse on
the spatial filling factor of the clumps. To do this, we took advantage of the
ability of GyrFalcON to deal with systems with different scales and ran a
simulation (C4.4) initialized with 80 small cold clumps (i.e. with a radius
RC = 2.8 kpc distributed in a sphere of radius 40 kpc). For this simulation,
evolution basically occurs in two stages, with a first collapse in which strongly
bound structures are formed in a very short time, followed by subsequent
merging (see Fig. 6.4). Interestingly, the outcome of this simulation is highly
isotropic (α ≈ 0 out to the half-mass radius) and very concentrated. We will
see (Sect. 6.6.5) that, even in this case, the density profile remains very well
represented by f (ν) models (and by the R1/4 law). For C4.4, after several
tens of dynamical times, there remain traces (remnants) of the more strongly
bound clumps, orbiting within the smooth system.
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6.5 Conservation of Q

We recall that the quantity Q (for a discrete system of N particles Q =
∑

i=1,N(Ji/|Ei|3/4)ν; see also Sect. 6.2) has been introduced for the descrip-
tion of conditions in which partial violent relaxation occurs, where it is argued
that information about the initial state is basically lost, except for an ap-
proximate conservation of a third quantity (in addition to total energy and
total number of particles). Therefore, it would be wrong to invert the argu-
ment and imagine that, by itself, the conservation of a quantity such as Q is
equivalent to the picture of incomplete violent relaxation. In particular, we
note that, judging from our set of simulations, Q is well conserved for homo-
geneous initial conditions, both in the velocity and position space. However,
this is less relevant to our goals, since homogeneous conditions do not allow
mixing and violent relaxation at the level of angular momentum space to op-
erate properly. Therefore, it is not surprising to find that the end-products
of simulations with homogeneous initial conditions tend to be less well rep-
resented by the f (ν) models, in spite of their relatively good conservation of
Q.

In this Section we will show that the issues involved in the conjectured
conservation of Q and the indications obtained from our simulations are
complex. Therefore, it would be pointless to continue further in this direc-
tion, looking for a better definition of what might be defined as “acceptable
degree of conservation” or searching for other quantities that might be con-
served better than Q. Instead, to make a decisive test about the merits of our
approach, we should take the models that have been constructed (by means
of the Ansatz of the Q-conservation) and compare them in detail with the
results of collisionless collapse obtained from our simulations. Such a test
will be addressed in the following Sect. 6.6.

6.5.1 The “observed” conservation

The value of Q, computed with ν = 1/2, is approximately conserved for a
wide range of initial configurations. By approximate conservation we mean
that ∆Q ≤ 0.5, although in some cases we have conservation as good as
∆Q ≈ 0.01. As a general rule, Q is better conserved if the initial virial ratio
is not too low.

A curious property is that all clumpy simulations appear to lead to the
same value of Q, with a scatter on the order of 10% (see Table 6.4). [I.e.
the scatter is less than the mean deviation from exact conservation, around
20− 30%.] This result can be interpreted, at the level of the simulations, by
considering that, independently of the specific details of the initial clumpy
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conditions, the large scale structure of the end products of the simulations is
very similar, with respect both to physical scales (constrained by the conser-
vation of mass and energy in the collapse) and to dimensionless dynamical
properties at large radii (see Sect. 6.6). In addition, the fact that the val-
ues of (M, Etot, Q) realized at the end of the simulations are approximately
constant is consistent with the fact that the best-fit models do not exhibit
wide variations in the values of Ψ and ν (cf. Table 6.4 and the discussion of
parameter space given by Bertin & Trenti 2003, Sect. 3).

Strict conservation is not meaningful, for a number of reasons. Indeed,
during collisionless collapse even the total number of particles N and the
total energy Etot are not conserved, if we refer these quantities to the final
set of bound particles; it was noted (Stiavelli & Bertin 1987) that the non-
conservation of Q actually correlates with the non-conservation of N and
Etot. A simple argument also warns us that the conservation of Q should
not be meant to apply to all conditions. The reason is that, if we refer to
the proposed definition, Q cannot be conserved in the limit of an infinitely
cold collapse. In fact, for an infinitely cold collapse (i.e. for u → 0, with
the stars kept at fixed initial positions), at the beginning of the simulation
we would have Q → 0 (because the single-particle angular momenta vanish,
in the limit of vanishing initial velocities, while the single-particle binding
energies remain at a finite value). On the other hand, at the end of the
simulation, the formation of a quasi-isotropic core with finite kinetic energy
content requires that the final value of Q be finite.

Furthermore, the quantity Q is referred to an ideal case characterized
by spherical symmetry, while, as noted earlier, both the initial and the final
configurations in our simulations of collisionless collapse can exhibit signifi-
cant deviations from spherical symmetry. To get an estimate of changes of
Q associated with deviations from spherical symmetry, we have considered
a (1/2; 3) f (ν) model, unstable against the radial orbit instability, and let it
evolve; the final quasi-equilibrium state is characterized by ε ≈ η ≈ 0.73 and
is associated with a change ∆Q = 0.12. Similar changes are observed by
stretching artificially an f (ν) model to a non-spherical geometry, with ε = 1
and η ≈ 0.7. But these changes are given for comparison only, since they are
not related to conditions in which violent relaxation takes place.

6.5.2 General polynomial dependence

Although aware of the fact that we should not really look for quantities con-
served exactly during collisionless collapse, we decided to test the paradigm
of Q conservation further by considering the more general class of Q func-
tionals, defined, for a system of N points, as:
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Figure 6.5: Conservation of the general functional Q̃ (see Equation 6.1) in a
typical simulation (C4.1).

Q̃ =
N
∑

i=1

Jν2
i

|Ei|
3
4
ν1

, (6.1)

where ν1 and ν2 are free parameters. We explored the parameter space
−1 ≤ ν1 ≤ 1 and −1 ≤ ν2 ≤ 1. The functional Q used to construct the f (ν)

models corresponds to the condition ν = ν1 = ν2 > 0, which guarantees the
desired asymptotic behavior for the associated density ρ ∼ r−4 at large radii.

We studied the change in the value of this functional computed at the
beginning and at the end of a typical simulation (105 particles in 10 cold
clumps, run C4.1; see Fig. 6.5). If we focus on the ν1 = ν2 = ν condition,
the best conservation would be attained for low values of ν.

6.6 Fit with the f (ν) models

We first fit the density and the pressure anisotropy profiles, ρ(r) and α(r), of
the end-products of our simulations by means of the f (ν) family of models.
The phase space properties of the best-fit model thus identified are then
compared with those of the end-products of the simulations.

Smooth, angle-averaged simulation profiles are obtained by binning the
particles in spherical shells and averaging over time, based on a total of
20 snapshots taken from t = 64 to t = 80, at an epoch when the system
has already settled down in a quasi-equilibrium configuration. For the f (ν)

models, the parameter space explored is that of an equally spaced grid in
(ν, Ψ), with a subdivision of 1/8 in ν, from 3/8 to 1, and of 0.2 in Ψ, from
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0.2 to 14.0 (corresponding to the grid of models studied in Paper I). The
mass and the half-mass radius of the models are fixed by the scales set by
the simulations.

A minimum-χ2 analysis is then performed, with error bars estimated from
the variance in the time average process used to obtain the smooth simulation
profiles. A critical step in this fitting procedure is the choice of the relative
weights for the density and the pressure anisotropy profiles. We adopted
equal weights for the two terms, checking a posteriori that their contributions
to χ2 are of the same order of magnitude.

6.6.1 Density profiles

Since the half-mass radius rM and the total mass M are kept fixed in the
fitting procedure, we are left with two degrees of freedom (i.e., the dimen-
sionless parameters ν and Ψ). In practice, given the general behavior of
the density profile of the f (ν) models (see Fig. 5.3), at large radii the free-
dom in the fit is limited. Therefore, the excellent match at large radii
to the density profile of the end-products of the simulations demonstrates
that the f (ν) family has been constructed on solid physical grounds. Dif-
ferent values of (ν, Ψ) correspond to different shapes of the inner potential
well and of the anisotropy profile. As exemplified by Figs. 6.7-6.10, the
density of the final systems produced by the high resolution set of sim-
ulations (C2 and C3) is well represented by the best-fit f (ν) profile over
the entire radial range, from 0.1 to 10 half mass radii. The fit is satis-
factory not only in the outer parts, where the density falls by nine orders
of magnitude with respect to the central regions, but also in the inner re-
gions. The mean absolute relative deviation between simulations and models
(〈|∆ρ/ρ|〉 = (1/Ng)

∑Ng

i=1 |ρsim(ri) − ρmodel(ri)|/ρsim(ri)), computed over this
extended radial range, is usually around 10% (see Table 6.4); here Ng repre-
sents the number of radial grid points.

With a similar procedure, we have studied the end-products of simula-
tions characterized by different numbers of particles and clumps (C1 and
C4). No significant changes in the quality of the fits are found if we focus
on simulations characterized by clumpy initial conditions (with the possible
exception of those run with NC ≥ 80) .

6.6.2 Projected density profiles

The end-products of collisionless collapse are known to be characterized by
projected density profiles generally well fitted by the R1/4 law (de Vaucouleurs
1948), provided that the collapse factor is large (i.e., that the initial virial
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ratio u is small; see van Albada 1982; Londrillo et al. 1991). With our set
of simulations we confirm this result and we extend it by means of the f (ν)

models.
The successful comparison between models and simulations is interesting

because, depending on the value of u, some simulations lead to configurations
that exhibit deviations from the R1/4 law. In these cases, the density profile
projected along the line of sight is characterized by an R1/n behavior with
n 6= 4. For example, the C2.4 simulation, which starts with a low collapse
factor, has a best fit index n ≈ 3, while the the simulation C3.1, which has
a large collapse factor, is best represented by a profile with n ≈ 5. Yet these
systems all turn out to be well fitted by the f (ν) models. Therefore, the
family of models that we have identified might also be useful for describing
systematic structural changes in galaxies, in the framework of the proposed
weak homology of elliptical galaxies (Bertin et al. 2002).

6.6.3 Pressure anisotropy profiles

In our simulations the pressure anisotropy profiles follow the general trend
expected for the process of collisionless collapse. In particular, the final
configurations are characterized by an isotropic core, with α ≈ 0, while the
outer regions have a strongly radially biased anisotropy (up to α = 2). The
transition region (α ≈ 1) is located around the half-mass radius (see column
rα/rM in Table 6.3). Higher values of 2Kr/KT are associated with lower
values of rα/rM . For clumpy initial conditions (with the possible exception
of those run with NC ≥ 80), the anisotropy profile α(r) is a monotonic
increasing function of the radius. A curious feature is found for the results of
collapse of uniform spheres (runs U). Here (see Fig. 6.6) the core is basically
isotropic, with the region around the half-mass radius exhibiting an excess of
tangential orbits (up to α ≈ −0.4). In the outer parts, but with a very sharp
transition, the pressure profile becomes radially biased. In correspondence
to the dip in α, where α < 0, we note a clear feature in the density profile
(see Fig. 6.6). Uniform spheres initialized with a very small particle number
(N < 104) do not show this behavior; for them the pressure anisotropy rises
quite regularly, although the profile is significantly affected by Poisson noise.

In conclusion, for all the clumpy C runs (again, we should mention, with
the possible exception of those runs with NC ≥ 80), the anisotropy profile
is represented extremely well by our models, with a mean absolute error
(〈|∆α|〉 = (1/Ng)

∑Ng

i=1 |αsim(ri) − αmodel(ri)|) typically around 0.1 but often
as low as 0.05 (see Table 6.4).

To some extent, the final anisotropy profiles for clumpy initial conditions
are found to be sensitive to the detailed choice of initialization. In other
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words, runs starting from initial conditions with the same parameters, but
with a different seed in the random number generator, give rise to slightly
different profiles. In any case, the agreement between the simulation and the
model profiles remains very good (see Figs. 6.7-6.10).

6.6.4 Comparison at the level of phase space

At the level of phase space, we have performed two types of comparison,
one involving the energy density distribution N(E) and the other based on
N(E, J2). The chosen normalization factors are such that:

M =

∫

N(E)dE =

∫

N(E, J2)dEdJ2. (6.2)

The energy distributions N(E) that we find (see Fig. 6.7-6.10), qualita-
tively similar to those obtained in earlier investigations (see Fig. 2 in van
Albada 1982 and Fig. 10 in Udry 1993), are characterized by an approximate
exponential behavior at low energies (N(E) ∝ exp (−aE)) with a rapid cut-
off near the origin, which is argued to go as |E|5/2 because the potential is
Keplerian in the outer parts (Udry 1993; see also the discussion by Jaffe 1987
and by Bertin & Stiavelli 1989). The final states of the simulations also show
the presence of particles with positive energy, escaped from the system.

In Fig. 6.7 (bottom right frame) we plot the final energy density distribu-
tion for the simulation run C3.5 with respect to the predictions of the best-fit
model identified from the study of the density and pressure anisotropy distri-
butions. Similar plots are given in the following figures for other simulations.
The agreement is very good (〈|∆E|〉 ≈ 0.2, see Table 6.4), especially for
the strongly bound particles. In particular, this means that we are correctly
describing the innermost part of the system. The energy distribution for
less bound particles (i.e. those associated mostly with the outer parts of
the system) is less regular and sometimes presents a double peak (e.g., see
Fig. 6.8), which obviously cannot be matched in detail by our models. This
is an interesting example of the way some memory of the initial state can
be preserved (the extra-peak is indeed related to the initial distribution of
binding energies) and a direct sign of the incompleteness of violent relaxation.

Finally, at the deeper level of N(E, J2), simulations and models also agree
rather well, as illustrated in the four panels of Figs. 6.11-6.14. For the cases
shown, the distribution contour lines are in good agreement in the range from
Emin to E ≈ −4; however, the theoretical models show a peak located near
the origin, not present in the simulations, which is related to the Jacobian
factor arising from the transformation of the f (ν) distribution function from
the (~x, ~w) to the (E, J2) space.
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Figure 6.6: Density and anisotropy profiles (left frames) and energy den-
sity distribution (right frame) for simulation U6.2, starting from a homoge-
neous sphere. Note that in the vicinity of the half-mass radius the pressure
anisotropy is tangentially biased.
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Figure 6.7: Comparison between the C3.5 simulation and the best-fit f (ν)

model (1/2; 6.2). The top left panel represents the density as measured from
the simulation (error bars) and the best-fit profile (line). The top right panel
gives the residuals from the fit. At the bottom left, the anisotropy profile of
the simulation (error bars) is compared with the best-fit profile (line); the
bottom right frame illustrates the energy density distribution N(E). The
density ρ and the single-particle energy E are given in code units.
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Figure 6.8: Comparison between the C2.1 simulation and the best-fit f (ν)

model (1/2; 4.8), shown as in Fig. 6.7.
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Figure 6.9: Comparison between the C2.3 simulation and the best-fit f (ν)

model (5/8; 5), shown as in Fig. 6.7.
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Figure 6.10: Comparison between the C3.4 simulation and the best-fit f (ν)

model (5/8; 5.4), shown as in Fig. 6.7.
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Figure 6.11: Final phase space density N(E, J 2) (left column) for the simula-
tion C3.5, compared with that of the best fitting (1/2; 6.2) f (ν) model (right
column).
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Figure 6.12: Final phase space density N(E, J 2) (left column) for the simula-
tion C2.1, compared with that of the best fitting (1/2; 4.8) f (ν) model (right
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Figure 6.13: Final phase space density N(E, J 2) (left column) for the simula-
tion C2.3, compared with that of the best fitting (5/8; 5.0) f (ν) model (right
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Figure 6.14: Final phase space density N(E, J 2) (left column) for the simula-
tion C3.4, compared with that of the best fitting (5/8; 5.4) f (ν) model (right
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6.6.5 An additional test to characterize clumpy initial
conditions

As an additional test to characterize the detailed effects of clumpiness, we
studied the end-products of the CV 5.1 and CP5.2∗ simulations, by compar-
ing them with the f (ν) models.

Although these two runs start from initial conditions rather different
from our standard choice (cf. C1-C3), being homogeneous either in position
(CV 5.1) or in velocity (CP5.2∗) space, we note that they can be fitted very
well by our family of models: (3/4; 5.4) for CV 5.1 and (1; 6.2) for CP5.2∗

(with 〈|∆ρ/ρ|〉 ≈ 0.1). The good match at the level of the anisotropy profile
α(r) and of the single-particle energy distribution also confirms, as discussed
in the Appendix, that the requirement of clumpiness in phase space is a well
posed characterization of the initial conditions. The two runs have the fol-
lowing behavior with respect to the Q-conservation: ∆Q = 0.02 and final
value Q = 1.40 for CV 5.1; ∆Q = 0.01 and final value Q = 1.26 for CP5.2∗.

In passing, we note that the C4.4∗ simulation, characterized by very small
clumps, leads to a concentrated final density profile that is well reproduced
by the (1; 9.2) f (ν) model (with 〈|∆ρ/ρ|〉 ≈ 0.15).

6.7 A quantitative measure of clumpiness

In order to characterize the degree of clumpiness present in the initial condi-
tions of our simulations, we may consider, in the 6-dimensional phase space,
the ratio cl = 〈ρ(6)

local〉/〈ρ(6)〉 of the mean local density around particles to the
mean density.

We estimate the mean 6-dimensional density in phase space 〈ρ(6)〉 by
dividing the number of particles N by the typical total volume occupied.
Since the large-scale structure in phase space is that of a sphere both in
position and velocity space separately, we compute the total volume as the
product of these two volumes. Each volume is calculated by assuming that
the radius of each sphere is equal to the mean distance between two randomly
chosen particles in the relevant space (position and velocity respectively);
for example, for a homogeneous density distribution inside a sphere of unit
radius, the radius determined from the adopted procedure would be ≈ 1.03.

The local density ρ
(6)
local (required for calculating the average used in the

definition of cl) is computed by considering one particle and by counting the
number of neighboring particles Nlocal within a six-dimensional small sphere
of fixed radius rs (and thus by assuming an equally weighted norm in the
phase space for positions and velocities). The scale rs is chosen in such a
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Figure 6.15: Comparison between the CV 5.1 simulation and the best-fit f (ν)

model (3/4; 5.4), shown as in Fig. 6.7.
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Figure 6.16: Comparison between the CP5.2∗ simulation and the best-fit f (ν)

model (1; 6.2), shown as in Fig. 6.7.
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way that, on average, a small fixed fraction of the total number of particles
is enclosed. We set this fraction to be ξ = 〈Nlocal〉/N ≈ 1/250. This choice
ensures that we have, on average, a high filling factor within the small sphere,
so that the effects of biases in the local density estimation arising from the
coincidence of the center of the local sphere with the coordinates of a particle
are unimportant (for a discussion on the construction of unbiased estimators
for the local density, see also Casertano & Hut 1985).

The adopted scale rs also acts as a cut-off scale to the clumpiness estima-
tor cl, which is obviously insensitive to fluctuations at scales smaller than rs.
The dependence of the clumpiness estimator on ξ is illustrated in Fig. 6.17.
Eventually, diagnostic tools such as cl(ξ), as a measure of the initial spectrum
of inhomogeneities in phase space, will help us establish a bridge toward ini-
tial conditions representative of the cosmological context (see also comments
at the end of Sect. 6.3.1).

For our homogeneous initial conditions (simulations of type U) the value
of the clumpiness estimator is 0.65 . cl . 1, depending on the scale con-
sidered (cl = 0.72 for ξ = 1/250). Note that the value of cl can fall below
unity, because of boundary effects. In contrast, for the cold clumpy initial
conditions of type C1, C2, and C3 (with 10 and 20 clumps, and spatial filling
factor NC × R3

C/R3 ≈ 1.25), at ξ = 1/250 cl takes on values above 30, with
typical values around 50 and peaks up to 100. For simulation C4.4 (with
“small” clumps, and spatial filling factor NC ×R3

C/R3 = 0.027), cl increases
to 300. Conversely, cl decreases if the number of clumps is increased (down
to cl = 15 for simulation C4.3 with 80 clumps and to cl ≈ 4.5 for simulation
C4.5 with 400 clumps).

With the numbers quoted above, we see that, at fixed numbers of parti-
cles, the clumpiness estimator cl varies with the number of clumps NC used.

6.7.1 Clumpiness and mixing

As already anticipated in Sect. 6.4.3 and 6.4.4, for an efficient angular mo-
mentum mixing it is sufficient that clumpiness be present either in position
or in velocity space. In fact, a simulation starting from uniform conditions
in terms of positions but with clumpy structure in velocity space is bound
to develop, after a few dynamical times, a significant clumpiness in position
space (see Fig. 6.18), so that the single-particle angular momenta are well
mixed at the end of the simulation (much as in the left panel of Fig. 6.3).
This result confirms that our choice for quantifying the clumpiness of a given
configuration by looking at the six-dimensional phase space is indeed reason-
able.
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Figure 6.17: Clumpiness estimator cl as a function of ξ = 〈Nlocal〉/N , for
the initial conditions of simulations C4.1 (10 clumps), C4.3 (80 clumps), and
C4.5 (400 clumps). The spatial filling factor is kept approximately constant
(NC ×R3

C/R3 = 1.1−1.3). The arrow indicates the scale ξ = 1/250 to which
we refer most of our estimates.

Figure 6.18: Spatial configuration at time t = 4 (i.e., after a few dynami-
cal times, in the post-collapse phase) for the simulation CV 5.1. Note the
presence of clumps in position space.
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Figure 6.19: Scatter plot (final vs. initial values) for the single-particle spe-
cific angular momentum for the CV 5.1 simulation. Units for J are pc2/yr,
see Sect. 6.2. A similar figure holds for the simulation CP5.2∗.

6.7.2 Separate fits to density and anisotropy profiles
by means of simple analytic functions

Simple analytic descriptions of density profiles and, separately, of anisotropy
profiles are often used in stellar dynamics, without a specific physical scenario
of galaxy formation. For the density profile we may refer to:

ρ(r) =
(3 − γ)M

4π

r0

rγ(r + r0)4−γ
, (6.3)

where 0 ≤ γ < 3 is a free parameter, and M and r0 are a mass and length
scale respectively (Dehnen 1993). As discussed in Paper I, it is no surprise
to find that the case γ = 2 (Jaffe 1983) captures the general properties of the
density profile obtained by the simulations at the 20% level. Curiously, when
we fit the density distribution of some simulations by means of Equation (6.3),
the best fitting index γ is very low, γ ≈ 0.1 (see Fig. 6.20).

Similarly, for the anisotropy profile one might resort to the analytic dis-
tribution

α(r) = 2
r2

r2 + r2
α

, (6.4)

with rα being a free scale (Merritt 1985). As shown in Fig. 6.20, the typi-
cal shape of the anisotropy profile reached at the end of the simulations is
different.
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Figure 6.20: Density profile (left), fitted using Equation (6.3) with γ = 0.11,
and anisotropy profile (right), fitted with Equation (6.4), for the simulation
C3.4. Compare to the fit with the (5/8;5.4) f (ν) model in Fig. 6.10.

6.8 Conclusions

In this Chapter we presented the results of an extensive set of numerical
simulations starting from clumpy cold initial conditions. The collapse of a
gravitational N-body system starting from cold initial conditions leads after
a few dynamical times (i.e. ≈ 108 years for a typical elliptical galaxy) to
an equilibrium state with a dense isotropic core and a low concentration
anisotropic halo which we showed here to be represented in quantitative detail
by the f (ν) models. The density profile from the simulations is matched over
nine orders of magnitude with a relative error of 10%; in addition, the fit to
the anisotropy profile is excellent (mean error of 5%) and the models correctly
reproduce the phase space distributions in energy and angular momentum
(N(E) and N(E, J2)).

From the numerical simulations we have been able to measure directly the
conservation of Q, one key assumption that leads to the construction of the
distribution function of the f (ν) models (Stiavelli & Bertin 1987). Generally
this conservation is of the order 20% for low values of ν (i.e. ν ≈ 1/2). Inter-
estingly also the best fitting models of the end products of the simulations
tend to have ν ≈ 1/2, with a very limited dispersion (see Table 6.4. These
two observations, in addition to the observational evidence that also ν ≈ 1/2
is preferred for fitting the photometric and kinematic profile of NGC3379
give a strong empirical support to the claim that the f ν models with ν = 1/2
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are a one parameter equilibrium sequence, that for violently collapsed grav-
itational systems plays a role similar to that played by the King models for
truncated stellar systems relaxed due to collisional effects.
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Table 6.1: Initial conditions for the simulations. From the first column sim-
ulation identifier, the number of particles N , the number of clumps NC , the
initial virial ratio u, the initial values of the shape parameters ε0 and η0, and
the initial concentration Cρ0. For the exact definitions and for the general
characteristics of the groups, see Sect. 6.3.2. Four simulations, marked by a
∗, have been carried out with GyrFalcOn (Dehnen 2000).

N NC u ε0 η0 Cρ0

C1.1 105 10 0.275 0.83 0.70 3.0
C1.2 105 10 0.25 0.83 0.70 3.0
C1.3 105 10 0.225 0.83 0.70 3.0
C1.4 105 10 0.20 0.83 0.70 3.0
C1.5 105 10 0.175 0.83 0.70 3.0
C1.6 105 10 0.15 0.83 0.70 3.0
C1.7 105 10 0.125 0.83 0.70 3.0
C1.8 105 10 0.1 0.83 0.70 3.0
C1.9 105 10 0.075 0.83 0.70 3.0
C1.10 105 10 0.05 0.83 0.70 3.0
C2.1 8 · 105 20 0.23 0.93 0.73 2.8
C2.2 8 · 105 20 0.17 0.93 0.73 2.8
C2.3 8 · 105 20 0.12 0.93 0.73 2.8
C2.4 8 · 105 20 0.06 0.93 0.73 2.8
C3.1 8 · 105 20 0.08 0.95 0.91 2.2
C3.2 8 · 105 20 0.18 0.86 0.80 2.6
C3.3 8 · 105 20 0.15 0.84 0.70 3.1
C3.4 8 · 105 20 0.23 0.88 0.73 2.0
C3.5 8 · 105 20 0.15 0.95 0.88 3.7
C3.6 8 · 105 10 0.15 0.86 0.80 3.7
C4.1 105 10 0.15 0.87 0.80 2.8
C4.1∗ 105 10 0.15 0.87 0.80 2.8
C4.1h 105 10 0.15 0.87 0.80 2.8
C4.2 105 20 0.25 0.75 0.63 1.5
C4.3 105 80 0.14 0.90 0.77 1.9
C4.3∗ 105 80 0.14 0.90 0.77 1.9
C4.4∗ 105 80+ 0.15 0.85 0.78 2.0
C4.5 105 400 0.23 0.99 0.95 0.8
C4.5h 105 400 0.23 0.99 0.95 0.8
CV 5.1 105 10 0.23 1.00 1.00 1.0
CP5.2∗ 105 40 0.15 0.81 0.78 0.7
U6.1 8 · 105 N/A 0.10 1.00 1.00 1.0
U6.2 8 · 105 N/A 0.19 1.00 1.00 1.0
U6.3 8 · 105 N/A 0.29 1.00 1.00 1.0
U6.4 8 · 105 N/A 0.39 1.00 1.00 1.0
S4.2 105 N/A 0.25 1.00 0.99 1.5
S4.3 105 N/A 0.15 1.00 1.00 1.9
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Table 6.3: Final configurations for the simulations of collisionless collapse
listed in Table 6.1. The column entries are described in Sect. 6.4. Note that
the anisotropy profile in homogeneous simulations can be non-monotonic;
this is indicated by †. All simulations of type C1 and C2 start from identical
initial conditions within each series, except for a constant scaling of velocities.
The quantity ∆Q is referred to ν = 5/8 in simulation CV 5.1, to ν = 1 in
simulation U6.1 and to ν = 3/4 in simulation U6.2; this is indicated by #.

∆M ∆Q Cρ κ rα/rM ε η
C1.1 0.00 0.13 570 1.61 1.02 0.91 0.73
C1.2 0.002 0.17 600 1.60 0.94 0.91 0.74
C1.3 0.01 0.20 680 1.59 0.94 0.90 0.76
C1.4 0.01 0.24 790 1.57 0.88 0.95 0.79
C1.5 0.02 0.30 720 1.52 0.88 0.96 0.81
C1.6 0.03 0.38 820 1.50 0.93 0.99 0.80
C1.7 0.04 0.44 760 1.47 0.92 0.97 0.78
C1.8 0.05 0.52 850 1.53 0.87 0.96 0.79
C1.9 0.06 0.66 1130 1.67 0.75 0.97 0.75
C1.10 0.08 0.72 1090 1.74 0.79 0.94 0.69
C2.1 0.01 0.13 110 1.52 1.49 0.87 0.78
C2.2 0.02 0.25 160 1.62 1.24 0.88 0.78
C2.3 0.03 0.4 270 1.70 0.83 0.81 0.69
C2.4 0.07 0.5 520 1.76 0.74 0.81 0.63
C3.1 0.003 0.47 1690 1.99 0.44 0.90 0.73
C3.2 0.001 0.26 1250 1.85 0.55 0.93 0.70
C3.3 0.04 0.57 430 1.60 1.34 0.92 0.71
C3.4 0.02 0.23 500 1.65 1.15 0.93 0.81
C3.5 0.005 0.24 950 1.73 0.57 0.96 0.72
C3.6 0.005 0.27 690 1.79 0.75 0.80 0.77
C4.1 0.005 0.27 440 1.77 0.83 0.80 0.73
C4.1∗ 0.01 0.27 360 1.68 0.97 0.89 0.74
C4.1h 0.00 0.18 240 1.86 0.51 0.86 0.83
C4.2 0.12 0.10 160 1.40 1.65 0.90 0.78
C4.3 0.10 <0.01 70 1.60 1.53 0.84 0.74
C4.3∗ 0.07 0.15 70 1.50 1.56 0.86 077
C4.4∗ 0.04 0.4 4000 1.15 5.30 0.98 0.96
C4.5 0.125 0.02 20 1.20 1.74 0.96 0.95
C4.5h 0.10 0.05 15 1.16 1.58 0.99 0.97
CV 5.1 0.12 0.02# 90 1.55 1.50 0.91 0.75
CP5.2∗ 0.10 0.01 590 1.33 2.20 0.83 0.76
U6.1 0.33 0.29# 8 1.10 1.60† 1.00 1.00
U6.2 0.20 0.01# 6 1.10 1.56† 1.00 1.00
U6.3 0.06 0.14 9 1.11 1.50† 1.00 1.00
U6.4 0.00 0.09 8 1.11 1.60† 1.00 1.00
S4.2 0.00 0.09 506 2.13 0.29 0.99 0.98
S4.3 0.10 0.26 50 1.50 0.97 0.98 0.98
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Table 6.4: Best fit f (ν) models for the set of high resolution runs (series C2
and C3). The various columns give: run identifier, model identifier, mean
value of the absolute relative deviations from the density of the simulations,
mean value of the absolute deviations in the pressure anisotropy profile, mean
value of the absolute relative deviations in the energy distribution, and final
value of Q.

f (ν) 〈|∆ρ/ρ|〉 〈|∆α|〉 〈|∆E/E|〉 Q
C2.1 (1/2;4.8) 0.11 0.07 0.23 1.24
C2.2 (1/2;4.8) 0.11 0.06 0.22 1.33
C2.3 (5/8;5.0) 0.12 0.06 0.21 1.35
C2.4 (7/8,5.6) 0.14 0.08 0.23 1.33
C3.1 (3/8;5.6) 0.10 0.22 0.18 1.33
C3.2 (3/8;5.4) 0.11 0.19 0.22 1.26
C3.3 (1/2;5.2) 0.17 0.16 0.20 1.64
C3.4 (5/8;5.4) 0.12 0.05 0.18 1.40
C3.5 (1/2;6.2) 0.09 0.20 0.15 1.35
C3.6 (3/8;5.2) 0.13 0.05 0.20 1.35



Chapter 7

Conclusions and future
perspectives

1 In this Thesis we have concentrated on nearly spherical, one-component
stellar systems. As is well known, in spite of these restrictions, the equa-
tions of stellar dynamics allow almost complete freedom in the construction
of self-consistent dynamical models, with the only requirement that they
should be supported by a positive definite (but otherwise arbitrary) function
of E and J , as a distribution function in phase space. Therefore, the full
range of self-consistent one-component spherical stellar dynamical models is
enormous. Most likely, the majority of these models have little to do with
the systems that have been realized in nature. The main idea at the ba-
sis of the present work is to combine clues from N -body simulations and
from statistical arguments so as to pinpoint, among the enormous variety of
in principle acceptable dynamical models, those few that, because of their
physical justification, have a chance of matching the properties of interesting
classes of numerical simulations and of observed stellar systems.

Some interesting clues had been noted earlier. With the aim of summariz-
ing the main properties of incomplete violent relaxation during collisionless
collapse, it was discovered (Stiavelli & Bertin 1987) that, by arguing that a
third quantity Q (in addition to total energy and number of stars) should be
included among the relevant constraints in the extremization of the Boltz-
mann entropy, the most probable and thus physically justified distribution
function f (ν) leads to models that are in general qualitative correspondence
with the products of collisionless collapse found in numerical simulations and
with the observed luminosity profiles of bright elliptical galaxies.

In this Thesis we have demonstrated that the f (ν) models are able to

1These considerations have been published in Trenti et al. (2005)
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match in surprising quantitative detail the results of our numerical simula-
tions. At the same time, the f (ν) models exhibit projected density profiles
that are well represented by the R1/n law (generally with n ≈ 4; the residuals
from the fit are within 0.1 magnitudes in a radial range of from 0.1 to 10 ef-
fective radii; see also Chapter 5). Therefore, we have demonstrated that the
f (ν) models, as well as the end products of the collapse simulations, are rel-
evant to the description of the stellar distribution of elliptical galaxies. This
correspondence is even more remarkable if we recall that, from the results
established in the last decades, dark matter should play a dominant role in
the structure of galaxies, while our approach neglects, so far, some important
ingredients among which is the presence of a massive, possibly diffuse dark
halo.

Independently of stellar dynamical modeling, our simulations have shown
that clumpy initial configurations allow an efficient re-distribution of the an-
gular momenta of the individual particles during collapse: such efficient phase
space mixing is precisely the main condition required for a successful appli-
cation of the statistical arguments that lead to the construction of the f (ν)

family of distribution functions. In the past (e.g., see van Albada 1982; May
& van Albada 1984; Merritt & Aguilar 1985; Londrillo et al. 1991) it has
been noted that cold collapses, within a wide range of initial density profiles,
generate quasi-equilibrium systems with approximate R1/4 profiles. Here we
confirm that the best match to approximate R1/4 profiles is obtained from
initiallly clumpy configurations. It thus appears that collapses starting from
artificially uniform and spherically symmetric initial conditions retain too
much memory of the initial conditions and are unable to evolve into a uni-
versal density distribution. Therefore, it is interesting to find that precisely
those initial conditions that look more plausible and realistic from the phys-
ical point of view lead to end products able to match the stellar distribution
of observed systems in detail. We may then conclude that collisionless col-
lapse from clumpy initial conditions followed by violent relaxation is indeed
a formation mechanism relevant to elliptical galaxies.

If we now take the point of view of stellar dynamical modeling and exam-
ine the foundation of the f (ν) family of models, we note that many collapse
simulations show Q-conservation at the 20% level or better (e.g., C1.1, C2.1
and C3.4). But it is even more surprising to find that the end products
can be fitted so well by the f (ν) models. Such good fits make it clear that
the assumption of Q conservation narrows down the very wide range of self-
consistent dynamical models to precisely those few systems whose properties
match both observed systems and the end products of collisionless collapse.
One must conclude that the value of the Q-conservation assumption goes be-
yond mere “physical plausibility” and “mathematical convenience”: it does
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serve as a sound physical basis for the construction of dynamical models of
partially relaxed stellar systems.

We should emphasize that such detailed quantitative correspondence with
observed systems and with the end products of collisionless collapse comes as
a complete surprise, because the two parameters that can be varied within the
f (ν) family of models (i.e., ν and Ψ) leave very little freedom with respect
to density and anisotropy profiles (see Chapter 5). Especially noteworthy
are not only the match of the density profile over nine orders of magnitude
but also the excellent agreement of the velocity anisotropy profiles between
the f (ν) models and several end products of collapse from clumpy initial
conditions (see Figs. 6.7-6.10 and Table 6.4).

Yet one cannot claim that the f (ν) models give a fully satisfactory descrip-
tion of the phase space structure of systems produced via incomplete violent
relaxation. In fact, the associated N(E, J 2) distribution is characterized by
singular behavior near the origin in the (E, J2) plane, which is not present
in the end-states of the simulations. In spite of this discrepancy between
models and end-products of the simulations, the integrated properties (e.g.,
N(E), α(r) and ρ(r)) are very well reproduced. This confirms the fact that
a variety of different distributions in phase space can lead to the same inte-
grated properties. In this respect it appears that, if we refer to the extreme
outer parts of the system (with r � rM , and E → 0) the previously studied
f∞ models (Bertin & Stiavelli 1984), with their regular distribution function
f(E, J2) ≈ |E|3/2 at low values of |E|, might still have an advantage over the
f (ν) models.

Another interesting (although partly known) result of the present work
is that the velocity distributions of the end products of the collapse simula-
tions and of the best fitting models possess, in many cases, a rather strong
radial anisotropy. In some of the collapse simulations we see clear signs that
the radial-orbit instability has been active (as indicated by the correlation
between final ellipticity η and anisotropy content 2Kr/KT ; cf. Fig. 6.2), re-
sulting in end products that are close to the threshold for the onset of the
radial-orbit instability. In general, systems that are unstable with respect
to the radial-orbit instability should evolve into marginally stable systems
(see also the study of the unstable (1; 3.2) f (ν) model in Sect. 4.2). In view
of the good correspondence between the results of the formation processes
studied in this paper and important observed properties of elliptical galaxies,
we may argue that ellipticals are also likely to lie close to the threshold of
radial-orbit instability. This would happen if elliptical galaxies, during their
formation process, indeed went through a collisionless phase characterized
by strong radial motions (such as collapse or head-on mergers). We plan
to better quantify this connection by extending the study to two-component
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models and collapses, also starting from a power spectrum of perturbations
representative of cosmological initial conditions.

The last remark brings us naturally to one final comment. We recall that,
since collisionless dynamics is scale-free, the results obtained here can also
be interpreted as relevant to the description of the collapse of dark matter
halos. Clearly, since we do not include the effects related to the general
Hubble expansion and we do not initialize our clumpy conditions in terms
of the power spectrum of perturbations appropriate for a given cosmological
epoch, a direct comparison between our set of numerical experiments and the
profiles of dark matter halos obtained in ΛCDM simulations (Navarro et al.
1997; Moore et al. 1998) would not be justified. Still, our experiments can
be considered as one example of final equilibrium realizations of a dark halo,
when initial conditions are varied outside the prescriptions consistent with
the currently accepted cosmological framework (see also Lemson 1995). If we
now go back to our interpretation in terms of the f (ν) models, it is noteworthy
to point out that, although the density profile of the f (ν) models falls off as
1/r4 at large radii, in the inner parts that might correspond to the regions
inside the virial radius (for a definition see Navarro et al. 1997), the density
goes approximately as 1/r3.2 (see Sect. 5.3.1), which is very close to the
reported 1/r3 value for cosmological simulations (Navarro et al. 1997; Moore
et al. 1998). Since the outskirts of dark matter halos are “still collapsing”,
and thus their dynamical conditions are different from those under which
we derived the f (ν) models, this agreement appears surprisingly good and
suggests further investigations.
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