Image Processing in Python With Montage

John Good,! and G. Bruce Berriman?

1Caltech/IPAC-NExScl, Pasadena, CA 91125, USA, |jcg@ipac.caltech.edu
2Caltech/IPAC-NExScI, Pasadena, CA 91125, USA

Abstract.

The Montage image mosaic engine (http://montage.ipac.caltech.edu; https://github.com/Caltech-
IPAC/Montage) has found wide applicability in astronomy research, integration into
processing environments, and is an examplar application for the development of ad-
vanced cyber-infrastructure. It is written in C to provide performance and portability.
Linking C/C++ libraries to the Python kernel at run time as binary extensions allows
them to run under Python at compiled speeds and enables users to take advantage of all
the functionality in Python. We have built Python binary extensions of the 59 ANSI-C
modules that make up version 5 of the Montage toolkit. This has involved a turning the
code into a C library, with driver code fully separated to reproduce the calling sequence
of the command-line tools; and then adding Python and C linkage code with the Cython
library, which acts as a bridge between general C libraries and the Python interface.

We will demonstrate how to use these Python binary extensions to perform im-
age processing, including reprojecting and resampling images, rectifying background
emission to a common level, creation of image mosaics that preserve the calibration and
astrometric fidelity of the input images, creating visualizations with an adaptive stretch
algorithm, processing HEALPix images, and analyzing and managing image metadata.

The material presented here will be made freely available as a set of Jupyter note-
books posted on the Montage GitHub page.

1. Introduction

e Montage - image mosaic engine. Creates mosiacs from input set of FITS images
Written in ANSI -C. Portable. Components perform one task in the creation of
a mosaic (list them). Plus utilities for managing and organizing files, managing
FITS attributes, and analyzing image metadata. List them

e Wide appplicability. Used in NEO detection, Instrument Performance, Observa-
tion planning for JWST, Citizen Science, Machine Learning.

e . Created Python binary extensions of 59 modules in v5 of Montage. Gives
users the power of Python at compiled speeds. This has involved a turning the
code into a C library, with driver code fully separated to reproduce the calling
sequence of the command-line tools; and then adding Python and C linkage code
with the Cython library, which acts as a bridge between general C libraries and
the Python interface.

mailto:jcg@ipac.caltech.edu

2 Good and Berriman

The Python extensions have been released as v6 on Nov 12 2018. tested on Python
3.6, Mac OS X.
Python binary extensions of existing Montage modules; no new functionality has
been introduced. Click here to see a list (link to Jupyter notebook) of all supported mod-
ules. The Python extensions have been created by transforming the C code (https://github.com/Caltech-
IPAC/Montage) into a library, with driver code fully separated to reproduce the calling
sequence of the command-line tools; and then adding Python and C linkage code with
the Cython library, which acts as a bridge between general C libraries and the Python
interface. These binary extensions offer image processing at compiled speeds in the
Python environment.

2. How To Install and Use It

There are two ways to install MontagePy, all of which include all supporting packages:
there are no external dependencies. From PyPI, use the command "pip install Mon-
tagePy." Or download the .whl file (add link) and install with the command "pip install
file.whl."
We have delivered a set of Jupyter notebooks that give examples of how to use each
component in Python, and compares usage in Python with that in C. The Jupyter note-
books are available for download at https://github.com/Caltech—IPAC/MontageNotebooks
and they can be viewed without downloading at http://montage.ipac.caltech.edu/MontageNotebooks.

3. Building A Mosaic With Python
4. Visualizing Images in Python with Montage

Acknowledgments. Montage is funded by the National Science Foundation under
Grant Numbers ACI-1440620 and ACI-1642453., and was previously funded by the
National Aeronautics and Space Administration’s Earth Science Technology Office,
Computation Technologies Project, under Cooperative Agreement Number NCC5-626
between NASA and the California Institute of Technology.

5. References

Image Processing in Python With Montage

Building a Mosaic with Montage

hontage is a general toolkt for reprojecting and mosaicking astronamical mages and generaly
you hawe to marshall the specfic data you want to use carefully. But thene ane a few large-scale
uniform surveys that cover a large enough portion of the sky to allow a simple location-besed
apprcach.

In this notebook we will chooss & region of the sky and dataset to mosaic, retreve the archive
dara, reproject and bacuground-comect the images, and finay bulld an cutput mesaic. You are

free to modify any of the mosaic parameters but ber that &5 you go larger & of the steps wi
take longer (possibly much longer). if you do this for three different wavelenths, you can put them
togather in a full-color composite using our Sky Visualization notebook, which produced the imd
on the right.

As with many notebooks, this was derived from a longer script by breaking the processing up into
saguental steps. These steps (calls) have to be run one in saguence. Wait for each call to finish
(watch for the s1ep number in the brackets on the left to stop showing an astaris«) befone starting
the axecution of naxt cell of run tham all as a sat.

If you wan? to just see the code without all the explanation, check out this example.

Setup

Tha Mentage Python package & a moxeure of pure Python and Python binery extension coda. It
can be downlcaded using pip install MontageFy

Mo other natallations are necessary.

In [3]: # Star h self-contained

The Montage modules are pretty =
soript nesds a few extra wtilitiss.

import os
import sys
import shutil

from MontagePy.main import *
from MontagePy.archive import *

from IPython.display import Image

These are the parameters defining the mosaic we want to make.

location = "M 177

size = 1.8

dataset = "2MAEE J°
workdir = "Messierdi7"

So mot much to see so far We've defined a location on the sky (which can be ether an object name lg.g. "Messier 017 or coordinates.
The coordingte parser is pretty flaxible; "2h 29m 53s +a7d 1im 432" (defaulis to the Equatoral J2000 systam], "201. 54301 4745254
Egu B1550° and "104.95154 £9.55078 Galactic® al work. We've aiso defined a size. In this case wa are going to use this balow 1o
construct a simpla Nerth-up gnomeonic prection aguare box on the sky; you are free to define any header you like as Mentage supports &
standard agtronomical projections and coordinate systems.

Working Environment

Before we get to actually building the mosaic, we need to set up our working environment. Given the volume of data possibie, the Montage
processing is file basad and we need 1o set up some subdiractories to hold bits of it. This will all be under an instance-specific directory
specfied above ('workdir). It is best not to use dirsctory nemes with embedded spaces.

In [4]: | # We create and mowe into subdirectori
but we want to come back to the ori
whenever we restart the process

Figure 1. Section of Jupyter Notebook for Building a Mosaic of M17

In [16]¢

In [17]¢

Qut[1l

Good and Berriman

os.nkdirs{"work/sDss")
except:
pass

rtn = mViewe /EDES/SDE5.png’, mode=1)

{rtm)
{'status': '0', 'type': b'color’', "nx": 1200, 'ny’: 1200, 'graymi ! 0.0, ‘grayminpercen 0.0, 'gr
aymrinsigma': 0.0, 'graymaxval': 0.0, "graymaxpercent 0.0, 'graymaxsigma': 0.0, 'blueminval’': 1660.944

1304816301208, ' a ! 0.10000000000002897, 'bluemaxval': 1B8
166.6, 'bluemaxs. cenminval': &12.15766982
S5HI6BE, 'greenmins 0 -1000300000000262, "greenmaxval': 2627
a redminval": 896.5%336339

8B6289596; 'blueminpercent': 45
331.51087929482, 'bluemaxpercent
25872, ‘greecnminpercent': 43.04%8554
6.0857 78495264, 'greenmaxpercent’: 100.0, °grecnmaxs

051037, 'redminpercent®: 42.62543763181061 redminsigna' = 0.10000000000000%08, 'redmaxval': ZO0567.633

47893109, 'rodmaxpercent redmaxsigna': G2B5,59589178062 'graydatamin': 0.0, 'graydatamax':

0.0, 'bdatamin 1650.133331 bdatamax' 18B33.51097925482, 'gdatam " G08.507335665%52034, "gda
'rdat a0, 1250441316, 'rdatamax': 205 947893109, '£lipx': 0, °
'bunit”: 3

Tha rewm contains details of the indivdual mage streiching, image sze, and 50 on.

Hera '3 the output Image:

from IFython.display import Image

Image(filename="work/SDES/EDEE.png")

Figure 2. Three color Slaon Image of M51 Created With mViewer

