AXS: Making end-user petascale analyses possible, scalable, and
usable

Petar Zecevié,! Colin T. Slater,2 Mario Juri¢? and Sven Lonéarié!

YUniversity of Zagreb, Croatia; petar.zecevic@fer.hr, sven.loncaric@fer.hr

2Um'versity of Washington, USA; |ctslater@uw. edu,
mjuric@astro.washington.edu

Abstract. We introduce AXS (Astronomy eXtensions for Spark), a scalable open-
source astronomical data analysis framework built on Apache Spark, a state-of-the-art
industry-standard engine for big data processing. In the age when the most challenging
questions of the day demand repeated, complex processing of large information-rich
tabular datasets, scalable and stable tools that are easy to use by domain practitioners are
crucial. Building on capabilities present in Spark, AXS enables querying and analyzing
almost arbitrarily large astronomical catalogs using familiar Python/AstroPy concepts,
DataFrame APIs, and SQL statements. AXS supports complex analysis workflows
with astronomy-specific operations such as spatial selection or on-line cross-matching.
Special attention has been given to usability, from conda packaging to enabling ready-
to-use cloud deployments. AXS is regularly used within the University of Washington’s
DIRAC Institute, enabling the analysis of ZTF (Zwicky Transient Facility) and other
datasets. As an example, AXS is able to cross-match Gaia DR2 (1.8 billion rows) and
SDSS (800 million rows) in 20 seconds, with the data of interest (photometry) being
passed to Python routines for further processing. Here, we will present current AXS
capabilities, give an overview of future plans, and discuss some implications to analysis
of LSST and similarly sized datasets. The long-term goal of AXS is to enable petascale
catalog and stream analyses by individual researchers and groups.

1. Introduction

Modern astronomical surveys produce ever larger amounts of data. For example, Large
Synoptic Survey Telescope (LSST), which is to start in 2022, will perform approxi-
mately 1000 observations of about 20 billion objects (LSST Science Collaboration
2009). This will result in approximately 50 PB of (raw) data over the 10 years of its
operations.

Large survey analysis typically involves generating subsets of data by querying
the larger catalog (usually with SQL), followed by downloading them (as FITS files, or
similar). This is further followed by writing custom (usually Python) scripts to do the
bulk of the analysis. While certainly doable, this subset-download-analyze workflow
can be cumbersome, especially if executed repeatedly. Beyond working on a single
catalog, we often want to positionally cross-match objects from two (or more) survey
catalogs. This is often solved by pre-computing cross-match tables between catalogs,
but as the number of catalogs grows this becomes inefficient (O(N?), where N is the
number of catalogs). Finally, most upcoming servers today will be multi-epoch. There’s

1

mailto:petar.zecevic@fer.hr
mailto:sven.loncaric@fer.hr
mailto:ctslater@uw.edu
mailto:mjuric@astro.washington.edu

2 Petar Zecevic, Colin T. Slater, Mario Juri¢, and Sven Loncari¢

therefore a need to enable efficient analyses of time series, multiple observations of a
single object.

2. Apache Spark as the Workflow Engine for Astronomical Datasets

AXS’ goal is to provide a simple, user-friendly, scalable and efficient tool for cross-
matching and analyzing data from large astronomical surveys. AXS extends Apache
Spark (Zaharia et al.| 2016), a general-purpose framework for big data processing.
Spark’s analytical processing functions are implemented through the Resilient Dis-
tributed Dataset (RDD) abstraction. Spark automatically distributes operations on RDDs
and executes them in parallel with the minimum involvement of the user.

Spark’s rich API can be accessed using SQL, Scala, Java, Python and R interfaces
and it offers a breadth of functions: processing of structured and unstructured data, in
a streaming or batch fashion, with graph and machine learning algorithms available.
Spark can also recover from failures of individual nodes and is efficient and scalable. It
enjoys wide and active user base, both in industry and academic world.

These are the main reasons why we chose Spark to be the base for building AXS
upon.

3. Minimal Astronomy-specific Extensions for Spark

Spark already implements a significant fraction of functionality needed to support as-
tronomical data analysis and explorations. We’ve found that with only two simple
extensions — a data partitioning scheme built on existing bucketing support and (com-
pletely generic) improvements to the underlying Spark sort-merge join algorithm im-
plementations — it is possible to deliver very performant cross-matching and querying
functionality. The purposefully minimal nature of our changes may be more maintain-
able in the long-run relative to approaches which use astronomy-specific partitioning
(e.g., HEALPix-based approaches such as Juric| (2011)), or the recent effort in |Brahem
et al.| (2018)).

3.1. Data partitioning

Data partitioning scheme employed by AXS is based on the Zones algorithm (Gray
et al.[2007), a well-known algorithm in the Astronomy community, with adaptations
needed to support Spark’s distributed architecture. In the AXS data partitioning scheme,
sky is partitioned into horizontal bands of fixed height called zones. Zone height is
one arc-minute by default, which makes 10800 zones. An object’s zone is deter-
mined based on its Dec coordinate using this simple formula (Z is the zone height):
zone = | (Dec + 90)/Z]

These are physically stored by Spark into buckets, implemented as Parquet files on
a (potentially distributed) filesystem, based on the calculated zone: bucket = zone%N
(where N is the number of buckets). The default number of buckets is 500, so there are
about 21 zones per bucket, by default.

3.2. Distributed cross-matching

To efficiently cross-match tables bucketed by zones, as previously described, AXS
partly relies on Spark’s sort-merge join and partly on the contributed epsilon-join (Silva

AXS: Making petascale astronomical analyses possible 3

et al.|2010) optimization. To understand this optimization, consider the following
query:
select * from gaia, sdss where gaia.zone = sdss.zone AND

gaia.ra BETWEEN (sdss.ra + DELTA, sdss.ra - DELTA) AND
distance(gaia.ra, gaia.dec, sdss.ra, sdss.dec) < DELTA;

Here, two tables are joined based on the zone column and the distance between
two rows is calculated using the provided distance function. Without the range con-
dition on the secondary columns (ra columns), all the pairs of objects from the two
tables having the same zone would need to be considered, which can involve a huge
number of comparisons. However, Spark is not able to optimize this query and take
advantage of the range condition on its own. Epsilon-join optimization uses a moving
window which slides over the rows in the right table as the left row changes and hence
effectively restricts the number of row pairs considered. This is possible because AXS
data is sorted inside buckets by zone and ra columns. The distance function is thus
evaluated only for the rows in the moving window, only one pass through the data is
needed, and the join process uses the minimal amount of memory.

4. Cross-match performance tests

To benchmark AXS’ cross-matching performance we used the Gaia DR2 catalog with
1.7 billion objects and the ZTF catalog with 2.9 billion objects. The cross-matching
function calculated the distance between two objects using their RA and Dec coor-
dinates, but an arbitrarily complex function could also be used (e.g., one taking the
error-ellipses into account).

The cross-match operation for the benchmarked case results in 270 million rows.
The tests included only counting of the resulting rows and no further processing on
them was performed. The tests were performed on a single large machine with 512
GB memory, 48 CPUs and fast hard disks. Each Spark executor was given 12 GB of
memory and a single CPU core.

We looked at how the cross-matching time depends on the number of Spark ex-
ecutors used. The results are shown in Figure [I] The two different lines in the graph
show two sets of tests: with the cold and warm filesystem (“buffer”) cache. Each data
point on the graph is an average of three tests. The results with the cold buffer cache
show the "worst-case" performance of the system which includes reading data from
disk. The results with the warm cache more closely represent the time needed by the
CPU-limited aspects of the cross-matching operation (we note that the dataset is larger
than the memory available, so the data was never fully in the cache).

The lowest times we obtained, visible in the Figure, show that AXS can cross-
match these two tables (Gaia DR2 and ZTF) in 25 seconds, with the data cached; and
205 seconds, when the data is not cached. Adding more than 24 executors doesn’t offer
any substantial performance improvements.

5. Summary

In this paper we describe and show initial performance benchmarks for Apache eX-
tensions for Spark (AXS), a system for performant querying, analyzing, and cross-
matching data from astronomical catalogs, built on top of Apache Spark. AXS was

4 Petar Zecevic, Colin T. Slater, Mario Juri¢, and Sven Loncari¢

gaia-ztf

warm cache

600 cold cache

500

400

300

200

100

10 20 30

Figure 1. Duration in seconds of cross-matching Gaia DR2 and ZTF catalogs
depending on the numbers of Spark executors used. The two curves correspond to
tests with data obtained starting with a cold filesystem cache, and tests with some
data already residing in the cache. Each data point is an average of three tests.

created with the goal of making the power of an industry-standard tool such as Apache
Spark available to non-specialist astronomers for analysis of large-scale datasets. We
next plan to further optimize the AXS Python API and overall performance, as well as
to make AXS available both individually and as a part of a cloud-based service.

Acknowledgments. PZ, CTS, and MJ acknowledge support from the University of
Washington College of Arts and Sciences, Department of Astronomy, and the DIRAC
Institute. University of Washington’s DIRAC Institute is supported through generous
gifts from the Charles and Lisa Simonyi Fund for Arts and Sciences, and the Wash-
ington Research Foundation. MJ acknowledges further support from the Washington
Research Foundation Data Science Term Chair fund, and the UW Provost’s Initiative
in Data-Intensive Discovery.

References

LSST Science Collaboration 2009, Lsst science book, version 2.0.larXiv:0912.0201

Brahem, M., Zeitouni, K., & Yeh, L. 2018, IEEE Transactions on Big Data, 1

Gray, J., A. Nieto-Santisteban, M., & Szalay, A. 2007

Juric, M. 2011, in American Astronomical Society Meeting Abstracts #217, vol. 43 of Bulletin
of the American Astronomical Society, 433.19

Silva, Y. N., Aref, W. G., & Ali, M. H. 2010, in 2010 IEEE 26th International Conference on
Data Engineering (ICDE 2010), 892

Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J.,
Venkataraman, S., Franklin, M. J., Ghodsi, A., Gonzalez, J., Shenker, S., & Stoica, 1.
2016, Commun. ACM, 59, 56. URL http://doi.acm.org/10.1145/2934664

arXiv:0912.0201
http://doi.acm.org/10.1145/2934664

