
An HDF5 Schema for SKA Scale Image Cube Visualization

A. Comrie,1,2 A. Pińska,1,2 R. Simmonds,1,2 and A. R. Taylor1,2,3

1Inter-University Institute for Data Intensive Radio Astronomy, South Africa;
angus@idia.ac.za

2University of Cape Town, Cape Town, South Africa
3University of the Western Cape, Cape Town, South Africa

Abstract. We describe work that has been performed to create an HDF5 schema
to support the efficient visualization of image cubes that will result from SKA Phase 1
and precursor observations. The schema has been developed in parallel to a prototype
client-server visualization system, intended to serve as a testbed for ideas that will be
implemented in systems developed to replace the existing CyberSKA and CASA view-
ers.

1. Introduction

Most astronomy image files are currently packaged using the FITS standard (Wells &
Greisen (1979)); however, the FITS standard is not well-suited for storing or defining
additional derived data products in a hierarchical structure. The HDF5 technology suite
(Folk et al. (2011)) provides a data model, file format, API, library, and tools to enable
the creation of structured schemas for different applications. We will show how these
can be beneficial in packaging of radio astronomy (RA) data. In particular, our interest
is in supporting fast interactive visualization of data that will be produced by the SKA
telescope and its precursors.

Existing HDF5 schemas developed for RA data did not meet our requirements.
The LOFAR HDF5 schema (Anderson et al. (2010)) did not meet performance require-
ments, because of its approach of storing each 2D image plane in a separate group. The
HDFITS schema (Price et al. (2015)) serves as a starting point for an HDF5 schema
that maintains round-trip compatibility with the FITS format, but lacks the additional
structures required for pre-calculated and cached datasets. We have therefore created
a new schema tailored to our application, although it may be advantageous for other
processing and analysis applications as well. The schema is similar to that of HDFITS,
but extensions have been added to support a number of features required for efficient
visualization of large data sets.

2. Requirements

For our application, we use client-server visualization tools to view large RA image
cubes remotely. We are currently working with data from MeerKAT Large Science

1

mailto:angus@idia.ac.za


2 Comrie, Pińska, Simmonds, and Taylor

Projects, but aim to have a tool that will scale to the the data produced by the SKA.
This scale of data needs to be maintained on compute clusters with large, fast storage
systems: it is too large to download to workstations.

The server-based tool needs to be able to load image cubes quickly and to be able
to start manipulating them without a large amount of initial processing. Reproducible
results of commonly used compute or I/O intensive tasks therefore need to be pre-
calculated and stored in a hierarchical structure for easy access. To support these aims,
a number of different types of datasets are required:

• Average datasets store the average of the dataset along a particular axis (nor-
mally Z). These generally have a higher signal-to-noise ratio, and are useful
during data visualization. Calculating them on the fly is computationally expen-
sive. The name of the axis along which the average is taken should be indicated
by the dataset name.

• Permuted datasets (e.g. XYZ → ZYX) will allow for enormous speedups when
reading image slices along non-principal axes. The schema defines how optional
permuted datasets are stored in a standardized manner, so that software sup-
porting the schema can check for these datasets when performing I/O-intensive
dataset slices, such as reading a Z-profile at a given (X,Y) pixel value. The name
of the permuted dataset should indicate the permuted layout.

• Mip-mapped datasets store a copy of the dataset, down-sampled across a par-
ticular image plane (e.g XY). As the visualization of large data generally requires
down-sampling of generated images to match the user’s viewport, this allows for
the visualization of large data sets without loading entire image planes and per-
forming down-sampling for each generated image. In addition, this will enable
an efficient delivery of images to the client using tiling techniques commonly
used in geographic information system (GIS) applications.

• Histograms defined along a particular image plane (e.g. XY or YZ) are I/O
intensive to calculate, but relatively small and simple to store. For example,
calculating the histogram for a 4096 × 4096 image slice takes approximately
80 ms of calculation time, while calculating the histogram for an entire cube
can take far longer. Using the “square root” guideline, a histogram with N =
4096 would take an additional 16 KB of storage space. Stored histograms can
be used to calculate approximate percentile values, which are commonly used
in image visualization to restrict color mapping to a range of the data values,
thus preventing outliers from skewing the color-mapped image. Approximate
percentiles are sufficient for our purposes, provided that the number of histogram
bins is large enough.

3. Schema

Initial tests of the schema are based on files converted from existing FITS files produced
by scientists working on the MeerKAT data pipeline. When a FITS file is converted, a
top-level group called 0, which corresponds to the first Header Data Unit (HDU) in the
original file, is created. Additional HDUs are stored in sequentially numbered groups,
with the name of the HDU stored as the NAME attribute of each top-level group. The
FITS data is saved as the DATA dataset of each top-level group.



HDF5 for Visualization 3

/

0VERSION

SwizzledData MipMapsStatisticsBUNIT NAXIS ... DATA COMMENT HISTORY

ZYXW DATA ZYXW MEAN_Z

DATA_XY_2 DATA_XY_4

XY ZXYZ

MEAN MAX MIN NAN_COUNT HISTOGRAM HIST_MIN HIST_MAX

Legend

GroupAttributeDataset

Figure 1. Outline of our HDF5 schema, indicating the structure of basic attributes,
datasets and additional precomputed data.

FITS header entries for each HDU are stored as attributes of the relevant top-
level group. This allows files in the schema to be translated back into FITS format
if needed. We translate the COMMENT and HISTORY attributes to datasets rather than
multidimensional attributes.

We show an outline of our proposed schema for storing these additional features in
the HDF5 file in Figure 1. The name of each permuted dataset indicates the permuted
order of axes. In the case of the example shown, a 4D cube (XYZ with the W-coordinate
being Stokes parameters) has an additional dataset stored with the Z- and X-coordinates
permuted. Statistics and mipmapped datasets are named as shown, with the mip factor
indicated by the suffix of the dataset name.

A file will generally contain only a selection of the above additional features, de-
pending on the application. We can strip features out by copying datasets selectively
when offering downloads to clients. For example, permuted datasets and mipmaps are
stored purely for performance reasons, and can be removed when we offer a download
to clients, to minimize file size.

4. Performance

(a)

x (contiguous)

z

y (b)

x

(contiguous)
z

y

Figure 2. Example of accessing a 3×3×8 region of an image cube with dimensions
8 × 6 × 8, with the the contiguous coordinate chosen as (a) X and (b) Z.

In the example shown in Figure 2, a spectral profile is calculated from a 3 × 3 × 8
region of an image cube with dimensions 8 × 6 × 8. In the standard approach, when
the X-coordinate is contiguous, each read operation consists of a 3 × 4 = 12 byte read,
followed by a seek to the next row, yielding a total of 3×8 = 24 read operations. When
we use the permuted dataset, with the Z-coordinate contiguous, each read operation



4 Comrie, Pińska, Simmonds, and Taylor

Table 1. Performance comparison of workloads on a 5850 × 1074 × 376 image.

Workload Original Permuted Speedup
[ms] [ms]

YZ-slice 5033 ± 7 2.08 ± 0.05 2420 ± 50
Z-profile 52.9 ± 0.1 0.182 ± 0.002 291 ± 4

32 × 32 × 376 region 340.1 ± 1.0 5.27 ± 0.04 64.5 ± 0.5
64 × 64 × 376 region 604.4 ± 1.7 13.1 ± 0.1 46.0 ± 0.5

128 × 128 × 376 region 876.8 ± 2.9 54.4 ± 0.7 16.1 ± 0.2

now consists of a 3 × 8 × 4 = 96 byte read, followed by a seek to the next column,
yielding a total of 3 read operations. For small read sizes, disk throughput is bounded
by the total number of I/O operations per second. Therefore, reducing the number of
read operations will dramatically increase disk throughput.

Several features inherent to HDF5 provide performance advantages. The Paral-
lel HDF5 library provides support for multiple processes to write to a single HDF5
file simultaneously using MPI. This can speed up image cube generation. In addition,
HDF5 allows us to alter dataset chunk size without changing the schema or code re-
quired to read the data, as this is abstracted by the HDF5 interface. This means that
we can performance-tune different files to suit different common access patterns while
maintaining schema compatibility.

Table 1 compares the execution time of common imaging workloads when data
is read from the original dataset and from a permuted copy. All measurements were
performed using an NVMe SSD, and the system buffer cache was cleared between each
benchmark run to ensure that results were not skewed by operating system-controlled
caching. Significant speedups are seen in all tested workloads when a permuted dataset
is used, with the readout of YZ plane-aligned subsets being most affected. The speedup
reduces as the size in the X and Y dimensions increases, which indicates that for regions
above a threshold the original dataset should be utilized for maximum efficiency.

5. Summary

In this paper we have presented a new HDF5 schema for astronomical image data. We
have explained our motivation for creating this schema to support our requirements for
the visualization of large data from radio astronomy. We have provided an overview of
the schema and the types of data access patterns that it supports. Initial tests of reading
from a permuted dataset defined in the schema show significant benefits for commonly
performed workloads.

References

Anderson, K., Alexov, A., Baehren, L., Griessmeier, J.-M., Wise, M., & Renting, A. 2010, PoS,
ISKAF2010, 062. [ASP Conf. Ser.442,53(2011)], 1012.2266

Folk, M., Heber, G., Koziol, Q., Pourmal, E., & Robinson, D. 2011, in Proceedings of the
EDBT/ICDT 2011 Workshop on Array Databases (ACM), 36

Price, D., Barsdell, B., & Greenhill, L. 2015, Astronomy and Computing, 12, 212
Wells, D. C., & Greisen, E. W. 1979, in Image Processing in Astronomy, 445

1012.2266

