A Machine Learning Approach for Dark-Matter Particle
Identification Under Extreme Class Imbalance

Raymond Sutrisno,! Ricardo Vilalta,! and Andrew Renshaw!
1University of Houston, 4800 Calhoun Rd., Houston TX, USA

rasutrisno, rvilalta, arenshaw@uh. edu

Abstract.  The Darkside-50 collaboration is an international experiment conducted at
the Laboratori Nazionali del Gran Sasso in Italy, where low-radioactivity liquid argon is
used within a dual-phase time projection chamber to detect weakly interacting massive
particles (WIMPS), one of the leading candidates for dark matter. The Darkside-50 ex-
periment faces two main data-analysis challenges: extreme class imbalance and large
datasets. In this paper we show how machine learning techniques can be employed,
even under the presence of samples exhibiting extreme class-imbalance (i.e., extreme
signal-to-noise ratio). In our data-analysis study, the ratio of negative or background
events to positive or signal events is highly imbalanced by a factor of 107. This poses a
serious challenge when the objective is to identify a signal that can be easily misclassi-
fied as background. We compare several techniques in machine learning that deal with
the class imbalance problem: ROUS, SMOTE, and MSMOTE. Experimental results
on real data obtained from the Darkside-50 experiment show very high recall values
(~ 0.985), with reasonable performance in terms of precision (~ 0.80) and F1-score
(~ 0.875).

1. Introduction

Many candidates have been hypothesized to describe the apparent missing matter in the
Universe, all of which would fall under the category of dark matter. It is referred as dark
matter because it is non-luminous and direct observation using traditional astronomical
techniques is not possible. Instead, its presence has been inferred by its gravitational
effect on surrounding luminous matter, as well as the footprints it has left within the
cosmic microwave background throughout the history of the Universe. Among the
leading hypothesized candidates, weakly interacting massive particles (WIMPs) have
become a favorite for experimentalists, since their interaction with normal matter can be
predicted and searched in ultra-sensitive detectors. Interacting via only the weak force,
a WIMP particle would have the potential of elastically scattering off the nucleus of an
atom that is contained inside a detector here on Earth, producing what is called a nuclear
recoil, and giving an avenue for the direct detection of a new particle that could explain
the dark matter puzzle. These nuclear recoils would be detectable inside detectors such
as the DarkSide-50 detector (Agnes et al.|20135)), currently operating at the Laboratory
Nazionali Gran Sasso in Italy. DarkSide-50 is an ultra-low background liquid argon
time projection chamber built specially for the detection of a WIMP recoiling off the
nucleus of an argon atom in the detector, and has been instrumental in the search for
high- and low-mass WIMPs (Agnes et al.|[2018).

The generated light signals coming from the nuclear recoil of a WIMP with the
liquid argon inside the DarkSide-50 detector are captured by photomultiplier tubes set
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in two arrays, at the top and bottom of the detector. Signals recorded by the photo-
multiplier tubes are used to reconstruct interactions. However, even with the ultra-low
background levels in the DarkSide-50 detector, the expected rate of electromagnetic in-
teractions inside the detector are quite large compared to the expected rate coming from
WIMP nuclear recoils. These electromagnetic interactions result from beta-particles
and gamma-rays interacting with the orbital electrons of the argon atoms in the de-
tector, which give off a slightly different response relative to the nuclear recoil from
a WIMP, allowing for the possibility to distinguish a WIMP signal from background
events. The very low expected rate of WIMP interactions in DarkSide-50 (less than
1072 per year), coupled with the background rate (order of 107 per year), creates an ex-
treme class imbalance between the potential WIMP signal and the background within a
data set that is quite large. With this in mind, an approach to classifying the data using
machine learning has been explored and described next.

2. Machine Learning for Dark-Matter Particle Identification

In supervised learning or classification, we assume the existence of a training set of
examples, T = {(Xj,y;)}, where vector X = (x,x2,---,X,) 1S an instance of the input
space X, and y is an instance of the output space V. The output of the learning algorithm
is a hypothesis (or function) f(x) mapping the input space to the output space, f : X —
Y. In our case, vector X corresponds to features characterizing events, including the
following: the number of pulses detected, the integral of the first pulse (S 1), the integral
of the second pulse (S,), the position where the event was located within the detector
(given by < Xpos, Ypos» tarifs >), and the ratio of the integral of the first 90 nanoseconds
of the first pulse relative to S . The class y can be a Neutron-Recoil (NR) event (positive
example), or an Electron-Recoil (ER) events (negative example).

The Class Imbalance Problem. A common difficulty when applying supervised learn-
ing is the presence of tasks with highly imbalanced class priors (i.e., extreme signal-
to-noise ratio). This is clearly the case when searching for dark matter particle interac-
tions, where the ratio of background to signal events is highly imbalanced by a factor
of 107. The difficulty comes in identifying a signal that can be easily misclassified as
background. Several techniques have been proposed to deal with the class imbalance
problem (Japkowicz|2000). In general, many solutions rely on basic operations: un-
dersampling the majority class, or oversampling the minority class (sampling is usually
done under a uniform random distribution). We describe the techniques used in our
experiments based on these basic operations.

Random Oversampling and UnderSampling Technique (ROUS). The first tech-
nique simply oversamples the minority class and undersamples the majority class. Sam-
pling is done under a uniform distribution. The procedure continues until we reach a
perfectly balanced class distribution. Oversampling the minority class is known to lead
to overfitting, but such adverse scenarios can be reversed when the majority class is
simultaneously undersampled.

Synthetic Minority Over-Sampling Technique (SMOTE). Rather than directly over-
sampling the minority class by creating copies of existing minority-class examples,
SMOTE generates synthetic examples by creating new instances along the vectors
connecting a minority-class example with the k-nearest-neighbors of the same class
(Chawla et al.[2002). The SMOTE algorithm is parameterized by the number of nearest



Machine Learning in Dark-Matter Particle Identification 3

neighbors K, and an integer N representing the percentage of newly generated synthetic
examples. The rationale is to oversample the minority class by spreading the location
of new examples on the input space; this helps to reduce model complexity (i.e., to
avoid overfitting).

Modified SMOTE (MSMOTE). MSMOTE is a modified version of SMOTE that at-
tempts to be more selective when oversampling. This is done by classifying neighbor
examples into three categories: security, border, and noise. Whereas SMOTE would
consider all three types, MSMOTE focuses on security examples only. The designa-
tion is determined by examining the classes of the k-nearest neighbors. If all k-nearest
neighbors share the same class as the minority-class example under analysis, the ex-
ample is considered of type security. A mixture of classes in the neighborhood of a
minority-class example suggests the presence of noise or of examples at the border
of minority and majority class regions; discarding these examples is hypothesized to
improve performance.

3. Experimental Setting

We report on a set of experiments using real data from the DarkSide-50 detector.
We tackle the class-imbalance problem using the techniques described above (ROUS,
SMOTE, and MSMOTE). We consider Neutron-Recoil (NR) events as positive exam-
ples and Electron-Recoil (ER) events as negative examples. We use Random Forests
(Hol[1995)) as the core learning algorithm. Random Forests and Decision Tree learners
come from the Scikit-Learn Python Machine Learning library. We invoke the Classi-
fication and Regression Tree algorithm (CART; Breiman et al.[[1984), with Gini as the
splitting criterion.

Every result is the output of 30 training and testing runs. Both training and testing
samples are obtained using stratified random sampling with ten thousand examples for
training and fifteen thousand for testing. The huge amount of initial data (~ 2.4 x 10°
ER events and 2.6 x 10* NR events) leads to data processing with high computational
cost. Our experiments make use of a computer cluster with 5,704 CPU cores in 169
compute and 12 GPU nodes; cpu type is Intel Xeon E5-2680v4, with approx. 40TB of
disk space and hundreds of GB in memory.

4. Results and Discussion

We use three performance metrics to assess model quality in the detection of Neutron-
Recoil events: precision, recall, and F1 score. The metrics are defined as a function
of the number of true positive (¢p), true negative (tn), false positive (fp), and false
negative (fn) predictions. They are commonly used in classification tasks with skewed
class distributions. The definitions are as follows:

F1 score = %

Recall " Precision

_ _tp ci M
Recall = ot Precision = 4P

Figure [I] contains plots of mean recall, precision, and F1 score when using the
three techniques designed to handle skewed distributions. The x-axis corresponds to
the amount of oversampling as a percentage of the number of minority-class examples
(e.g., N = 600 means six additional examples are created for every original example
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Figure 1.  Recall, Precision and F1 score for ROUS, SMOTE, and MSMOTE.
Background shadowed regions correspond to +/- one standard deviation estimated
from thirty runs.

in the minority class). Results show high values of recall (~ 0.985) that stay relatively
constant as oversampling grows; this is indicative of models bearing high sensitivity,
where very few signal events are classified as background. Precision, on the other
hand, shows lower performance (~ 0.80); it indicates many background events end
up classified as signal events. This is expected considering the overwhelmingly small
signal to noise ratio. But performance shows improvement as oversampling grows.
F1 score (~ 0.875) is simply a harmonic mean of recall and precision and also shows
improvement with increased oversampling. In terms of differences across techniques
to handle skewed distributions, all of them perform similarly considering the amount
of deviation around the mean (shadow regions in Figure[I)). We conclude that a simple
over- and under-sample technique suffices to handle the class imbalance problem in this
particular domain, and that additional work is needed to avoid incorrectly classifying
background events as signals.

Acknowledgments. This work was partly supported by the Center for Advanced
Computing and Data Systems (CACDS) at the University of Houston.

References

Agnes, P, et al. (DarkSide) 2015, Phys. Lett., B743, 456./1410.0653

— 2018, Phys. Rev. Lett., 121, 081307./1802.06994

Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. 1984, Wadsworth International
Group

Chawla, N. V., Bowyer, K. W, Hall, L. O., & Kegelmeyer, W. P. 2002, Journal of Artificial
Intelligence Research, 16, 321

Ho, T. K. 1995, in Document analysis and recognition, 1995., proceedings of the third interna-
tional conference on (IEEE), vol. 1, 278

Japkowicz, N. 2000, in Proceedinsg of the International Conference on Artificial Intelligence
ICAIOO


1410.0653
1802.06994

