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Abstract. Ground-based gamma-ray observatories such as the Cherenkov Telescope
Array presents new challenges for astronomical data analysis. The dynamics of the
atmosphere and the complexity of Cherenkov shower are two uncertainty sources that
needed to be embraced rather than corrected. As each telescope only has access to a
separated patch, the partial information of each one has to be combined. For instance,
when blots can be identified on the images, the application of Hillas parameters allows
to identify the approximate direction to the projection’s center. This information can
be combined for several telescopes using stereoscopic reconstruction to converge on a
single point. The limitation of this technique however is that it performs regressions to
a predefined blot shapes, not using all the information contained in the images. Thus,
deep learning techniques based on Convolutional Neural Networks have been applied
with promising results. However, they rely on very large networks that process all
the telescope images at once, which might not scale properly when dealing with large
arrays. We propose to run several separate instances of an smaller network for each
telescope, but that are able to retrieve a probability distribution instead of approximate
coordinates for the sought point. This probability distribution can be arranged by the
network so it can express certainty about the direction or the distance to the center of the
projection separately. The distributions retrieved by all the telescopes can be combined
to get a final probability distribution. Preliminary results shows the viability of this
approach to identify the center and assign a confidence value to the result.

1. The Gamma-ray Reconstruction Problem

When a very-high energy gamma-ray photon hits the Earth’s atmosphere, it produces
a fast shower of particles, some of them travelling at ultra-relativistic speed, and there-
fore emitting Cherenkov light that can be detected by using Imaging Atmospheric
Cherenkov Telescopes (IACTs) (Völk & Bernlöhr 2009). The analysis of the images
produced by the telescopes, allow the reconstruction of the penetration depth in the at-
mosphere, its direction and energy. This will be done on a large scale and with high pre-
cision by the Cherenkov Telescope Array (CTA), to be installed in the next few years in
Chile and Spain (Actis et al. 2011). The estimation of physical parameters from the im-
ages is a complex inverse problem that requires computing-intensive methods for simu-
lations, inference and validation. The accuracy, performance and reliability of the algo-
rithms involved in particle discrimination and gamma-ray reconstruction, are essential
for science with IACTs, because the sensitivity and confidence on the whole observa-
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tion depends on them. There are classical approaches for reconstructing gamma-rays
from IACTs images, such as exploiting the known geometric properties of the show-
ers (Hillas 1985), likelihood maximization of statistical models (De Naurois & Rolland
2009) or using fast monte-carlo simulations (Parsons & Hinton 2014). However, recent
advances are strongly based on machine learning methods, such as random forests,
boosted decision trees, and more recently, deep learning (Shilon et al. 2018; Mangano
et al. 2018). The use of these data-driven techniques impose new challenges in terms of
computational performance, correctness demonstration and uncertainty propagation.

2. Uncertain Multi-Observer Neural Network Assembly (UMONNA)

The general framework that we propose, called UMONNA, is formalized as follows.
Let T={t1, t2, ..., tn} be the set of images (and possibly additional data) received by a
set of n observers, and y a value that wants to be predicted on the domain D from this
images. The conventional machine learning approach would be to train the parameters
W of a model f that retrieves an approximation ŷ of y from the set T , i.e., ŷ = f (T |W).
We propose a model that retrieves a Probability Density Distribution (PDF) for y on the
domain D, based on the data of each observer ti independently. For this, let M be a PDF
parametrized by Σi that follows a model f :

Σi = f (ti|W)

Then, the PDF for y is:
M(z|Σi) where z ∈ D

This allows each observer i to retrieve wide probability distributions when their un-
certainty is high, which may be the case when ti doesn’t contain enough information,
this also allows them to express uncertainty in particular components of the domain D,
e.g. distance but not direction. The PDFs retrieved from the observers are then merged
within the domain D:

M∗(z) =

n
√∏

i M(z|Σi)∫
D

n
√∏

i M(z|Σi)dz

The approximation ŷ of y can be computed from the distribution directly, for example
by using the MAP criterion:

ŷ = arg max
z∈D

M∗(z|Σi).

2.1. Proof of Concept: Simple UMONNA

As a proof of concept we generated a “dummy shower”: synthetic blots distributed
with a clear pattern around a shower center and try to predict its position. We take
spread patches of this canvas as the images that each telescope receives. We trained a
Convolutional Neural Network (CNN) (Goodfellow et al. 2016) that retrieves a prob-
ability density distribution where each output of the M output neurons represents the
probability of the center being at a certain angle (see Figure 1.
One of the main challenges of this idea is to choose the right loss function so that the
retrieved PDFs can be evaluated correctly. When the PDF displays a high degree of
certainty, this loss must be higher on errors and lower on right predictions than when it
doesn’t.
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Figure 1. Simple UMONNA. The top-left image shows the synthetic shower over
the domain D. The bottom-left image simulates the scattered view that the tele-
scopes will observe. The bottom-right image presents the result of each network:
the sought-point probability distribution based only on a single image reconstruc-
tion. At last, the top-right image shows the joint probability distribution and the
maximum-a-posteriori (MAP) sought-point.

For this proof of concept, we selected a loss function that evaluates y in the output
distribution to obtain an error value:

L(y,Σi) =

(
1 −min

{
1,

M(y|Σi)
Cap

})2

where Cap is a limit for the PDF density to ensure that it is spread on other points of the
domain D.
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3. Conclusions and Future Work

The UMONNA approach separates a problem in smaller ones and provides a way to
merge the results (i.e., divide and conquer strategy). This allows to work with simpler
learning models, furthermore, by separating the observations, it increases the number
training of samples by a factor of n. Another benefit of this approach is that it allows
to measure the level of certainty of the assembly on different points of a continuous
domain D. We believe that his could be used to detect simultaneous γ-ray phenomena
occurrences through finding more than one local maximum in M∗(.).
In terms of future work, we are beginning to train and test with simulated data using
the Monte-Carlo simulators provided by CTA (Bernlöhr 2008). Also, we plan to es-
timate the energy and direction of the γ-rays, and not only the sought point as in this
paper. On the model side, we would like to get smoother PDFs through interpolation,
retrieve multivariate Gaussian distributions through deconvolutions, and include auto-
matic derelativation for each telescope.
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