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Abstract.

The Wide Field Infrared Survey Telescope (WFIRST) is a NASA flagship mis-
sion scheduled to launch in mid-2020, with more than one year of its lifetime dedicated
to microlensing survey. The aim is to discover thousands of exoplanets via their mi-
crolensing lightcurves, which will enable a Kepler-like statistical analysis of planets
1-10 AU from their parent stars and revolutionize theories of planet formation. The
goal of our work is to create an automated system that has the ability to efficiently
process and classify large-scale astronomical datasets that missions such as WFIRST
will produce. In this paper, we discuss our framework that utilizes feature selection
and parameter optimization for classification models to automatically differentiate the
different types of stellar variability and detect microlensing events. The use of fea-
ture selection enables us to learn which characteristics distinguish the different types
of events and to classify high-dimensional data more efficiently. We demonstrate our
proposed method on datasets acquired from UKIRT’s wide-field near-IR camera that
surveys the galactic bulge.

1. Introduction

The Wide Field InfraRed Survey Telescope (WFIRST) flagship mission Spergel et al.
(2015)) is scheduled to launch in mid-2020’s with > 1 year of its lifetime dedicated to a
microlensing survey. This survey will discover thousands of exoplanets near or beyond
the snowline via their microlensing light curve signatures, enabling a Kepler-like statis-
tical analysis of planets at 1-10 AU from their host stars and potentially revolutionizing
our understanding of planet formation.

In preparation for WFIRST’s microlensing survey, NASA’s Exoplanet Program
Analysis Group ExoPAG chartered a Study Analysis Group SAG — 11 identified three
programs for the microlensing community to undertake to prepare for WFIRST |Yee
et al.| (2014). Our work aims to directly address key precursor requirements, which
includes identifying target fields and developing analysis tools for WFIRST.

Using machine learning to modernize microlensing event detection is the critical
next step both for the UKIRT survey now and for the success of the WFIRST flagship
mission in the future. Machine learning builds a predictive model from human-labeled
examples that can 1) detect events of interest, such as microlensing, and 2) characterize
the properties of these events.
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2. Microlensing

For any microlensing survey, the number of detected planets is proportional to the num-
ber of microlensing events, which in turn depends on the density of observable stars.
Microlensing surveys have therefore concentrated their observing efforts toward the
Galactic bulge, where the stellar surface density is highest. However, these surveys
have been traditionally conducted at optical wavelengths, which suffer from high ex-
tinction from dust near the Galactic plane and center. To maximize the microlensing
event rate, their fields were selected based on a balance between stellar surface den-
sity and dust extinction. Observing in the near-infrared (NIR) mitigates the effects of
high extinction, enabling observations closer to the Galactic center, where the event
rate is expected to be higher. Understanding this potential, WFIRST will conduct its
microlensing survey in the NIR. However, until re- cently, no dedicated NIR microlens-
ing surveys have been conducted, and so the event rate in the NIR 4AS which is crucial
for WFIRST field optimization 4AS has not been measured. For this reason, ExoPAG
SAG-11 identified a NIR microlensing survey as a key precursor activity for WFIRST
(1Yee et al. (2014).

3. Data

In order to map the unknown NIR event rate, NASA is funding a NIR survey with
the United Kingdom Infrared Telescope (UKIRT), a 3.8-m telescope on Mauna Kea in
Hawaii. Initially started as a pilot study in support of the 2015 Spitzer microlensing
campaign, its target fields were relocated in 2016 to match Kepler’s K2C9 dedicated
microlensing campaign. In 2017, the program was expanded and the fields changed
again, now to cover all potential WFIRST fields, including the Galactic center, which
is inaccessible to optical surveys due to the high extinction

From our initial analysis of this data we have successfully detected the first five
microlensing events ever discovered in the NIR [Shvartzvald et al.| (2017) and found
a Jupiter-mass planet orbiting at 4 AU around a solar-type star, the first microlensing
exoplanet discovered and characterized independently of the long-standing optical sur-
veys |Shvartzvald et al.| (2018). While we have subsequently identified many additional
unpublished events, our analysis is based on a by eye selection of the most significant
events. Many additional events lie below our conservative detection threshold. More
importantly, the detection efficiency has not been calculated, without which it is impos-
sible to measure and map the underlying rate of microlensing event. For this project we
will develop statistically rigorous, computationally efficient tools to allow us to extract
the full potential from the UKIRT dataset.

3.1. Feature Extraction

To identify each lightcurve, we derived features using a grid-based approach for mi-
crolensing fit, based on method proposed in ?. The model grid uses two parameters:
effective event timescale and time when event peaks. To derive analytically the best fit,
each model lightcurve is scaled by the source flux and blended flux. We compare each
microlensing fit against a straight line to find the goodness of fit. The goodness of fits
provides a simple way to identify lightcurves with significant variability and are used
to perform intial selection of microlensing candidates. From this process, 66 features
are derived from statistics evaluating each lightcurve. Examples include statistics from
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microlensing fit and event timescale, event impact parameter, source flux, blend flux,
etc

4. Classification Methods

We are building classifier based on the extracted features with focus on identifying
microlensing events more effectively. To evaluate the performance of our recognition
system, we examined the following three classification methods: Random Forest, and
Support Vector Machine (SVM), K- Nearest Neighbor (KNN). In addition, we also
used model selection to optimize model parameters and feature selection to improve
class discrimination.

The first step in machine-based classification is to supply the computer with a set of
true classifications to train on. So while our eventual goal is to have the computer carry
the load for the overall dataset, we must still perform many (thousands) of individual
by-eye classifications. To ease this process, we have developed the Manual UKIRT
Lightcurve Eval- uator (MULE), a python-based GUI application that allows users to
quickly cycle through and evaluate a set of stored light curve

4.1. Feature Selection

One of the problems in using a large number of features is that there are many poten-
tially irrelevant features that could negatively impact the quality of classification. In
using feature selection techniques, we can choose a smaller feature set to reduce the
computational cost and running time, as well as achieve an acceptable, if not higher,
recognition rate. Adding more features is not always helpful; as the feature dimension
increases, data points become more sparse and some features are essentially noise. This
leads to the issue of selecting an optimal subset of features from a larger set of possible
features that will yield the most effective subset. The optimal solution is using an ex-
haustive search of all the features. This requires 2% — 1, or roughly 10'9 combinations.
Instead of performing 10'9 computations, we use a greedy search for selecting the fea-
tures. There are various ways of performing feature selection, such as forward feature
selection, backward selection, branch and bound, and stochastic search, each with its
advantages and disadvantages. We used forward feature selection for our experiments
since it is simple and straightforward

5. Experimental Setup and Results

Model selection is performed at each iteration of the feature selection process to learn
the optimal parameters for each classifier type and feature set. We used the filtered
dataset from 2017 UKIRT survey, we train a 3-class classifier to differentiate between
Microlesning, Variable, and Glitch. We used 3-fold cross validation, spliting the data
into 2/3 for training and 1/3 for test, over three trials. Data are normalized using zero
mean and unit variance

SVM and Random forest results are similar with RF performing slightly better
overall. We focus on using Random forest, as it is more robust, with the following
selected model parameters and 49 number of features.

Tested the classifier with the learned model 6 on the unlabeled test candidate
lightcurves Figure (right) shows some examples of lightcurves found from the unla-
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beled test candidates as microlensing (m) event, with class probability of being in the
microlensing class, p(m) > 0.8. Each lightcurve plot is ranked from highest to lowest
(left to right, top to bottom)

Figures ??

6. Conclusions and Future Work

This paper investigates techniques for developing a microlensing detection system us-
ing using the proposed features. The classification system was successful in classifying
the different types of events. We also found that using high number of features is not
always beneficial to classification. In using forward feature selection, a form of greedy
search, a smaller subset were required to achieve a high recognition rate. We have also
identified features that has potential to detect microlensing event with high probability.
Currently we are developing a framework for event injections to evaluate detection ef-
ficiency. We are also using active learning to reduce manual labeling of lightcurves by
automatically selecting most informative unlabeled lightcurves to improve classifica-
tion performance. In parallel, we are so investigating into domain adaptation to transfer
findings from UKIRT to WFIRST more effectively

Currently we are developing a framework for event injections to evaluate detection
efficiency. In parallel, we are also developing a tool using active learning to reduce
manual labeling of lightcurves by automatically selecting most informative unlabeled
lightcurves to improve classification performance. The next step, we are planning to
learn a model domain adaptation to transfer findings from UKIRT to WFIRST more
effectively.
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