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Abstract. Comprehensive observations of variable stars can include time domain
photometry in a multitude of filters, spectroscopy, estimates of color (e.g. U-B), etc.
When it is considered that the time domain data can be further transformed via digital
signal processing methodologies, the potential representations of the observed target
star are limitless. Presented here is an initial review of multi-view classification as
applied to variable star classification, to address this challenge.

1. Introduction

The classification of variable stars relies on a proper selection of features of interest
and a classification framework that can support the linear separation of those features.
Features should be selected that quantify the signature of the variability, i.e. its’ struc-
ture and information content. Prior studies have generated a multitude of features (e.g.,
SSMM, Fourier Transform, Wavelet Transformation, DF, etc.) that attempt to com-
pletely differentiate or linearly separate various variable stars class types (Richards
et al. 2012; Graham et al. 2013; Mahabal et al. 2017; Hinners et al. 2018). How to
process the complete set of features is an outstanding question.

Metric Learning has a number of benefits that are advantageous to the astronomer.
First, metric learning uses k-NN classification to generate the decision space, k-NN
provides instant clarity into the reasoning behind the classifiers decision (based on sim-
ilarity, “xi is closer to x j than xk”). Second, metric learning leverages side information
(the supervised labels of the training data) to improve the metric, i.e. a transformation
of the distance between points that favors the proposed goals: pull representatives from
similar classes closer together and push representatives from different classes further
apart, optimize to a low complexity metric via regularization, allow for feature dimen-
sionality reduction, etc. (Bellet et al. 2015). Third, k-NN implemented as part of metric
learning can be supported by other structures such as partitioning methods to allow for
a rapid response time, despite a high number of training data (Faloutsos et al. 1994).
Lastly, it can support the development of an anomaly detection functionality, which
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has been shown to be necessary to generate meaningful data in astronomical datasets
(Johnston & Peter 2017).

Multi-view learning can be leveraged to address the multitude of feature spaces or
views that may be available to the astronomer for the purpose of classification. Multi-
view learning can be roughly divided into three topic areas: 1) co-training, 2) multiple-
kernel learning, and 3) subspace learning. This work will focus on the method of co-
training, specifically metric co-training. The multi-view metric distance is defined as
Equation 1:
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where K is the number of views, xk
i is the ith observation and the kth view for a

given input. Presented here is a design the incorporates both metric learning and multi-
view learning.

2. Theory and Design

Our proposal is an implementation of both the feature extraction and classifier for the
purposes of multi-class identification, that can handle raw observed data. We implement
two novel time domain feature space transforms, SSMM (Johnston & Peter 2017) and
DF (Helfer et al. 2015), to demonstrate the utility of the metric learning and multi-view
learning. It is not suggested that these features are going to be the best in all cases, nor
are they the only choice as is apparent from Fulcher et al. (2013).

Large Margin Multi-Metric Learning (Hu et al. 2014, 2017) is an example of met-
ric co-training; the designed objective function minimizes the objective function of the
individual view, as well as the difference between view distances, simultaneously. The
objective function for LM3L is defined as Equation 2:
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where Ik is the objective function for a given kth individual view (Equation 3):
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where h(x) = max(x, 0) is the hinge loss function, yi j = 1 when data are from the
same class and yi j = −1 otherwise, and τk and µk are threshold parameters that enforce
the constraint yi j

(
µk − d2
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k
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)
> τk. In practice, optimizing Mk requires enforcing

the requirement Mk � 0, which can be slow depending on the methodology used. Hu
et al. (2014) transform the metric Mk, following Weinberger et al. (2006), as M = LT L.

The algorithm operates as a two step process (alternating optimization) between
the optimization of the decomposed metrics Lk and the weighting between the views
wk. The iterative update to the Lk estimate is generated via gradient for each view.
Second, the metrics Mk are fixed with the updated values and the individual weights
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w =
[
w1,w2,...wk

]
are estimated. The estimates for each weight can be given as Equation

4:

wk =
(1/Ik)1/(p−1)∑K

k=1 (1/Ik)1/(p−1) (4)

These two steps are then repeated for each iteration until
∣∣∣J(t) − J(t−1)

∣∣∣ < ε, i.e.
some minimum is reached. The derivation of this algorithm is outlined in Hu et al.
(2014), and the algorithm for optimization for LM3L is given as their Algorithm 1..

2.1. Large Margin Multi-Metric Learning with Matrix Variates (LM3L − MV)

Glanz & Carvalho (2013) define the matrix normal distribution as Xi ∼ MN (µ,Σs,Σc),
where Xi and µ are p×q matrices, Σs is a p× p matrix defining the row covariance, and
Σc is a q × q matrix defining the column covariance. The Mahalanobis distance for the
Matrix-Variate Multi-View case is given as Equation 5:
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where Uk and Vk represents the covariance of the column and row respectively.
The individual view objective function is constructed similar to the LMNN Weinberger
et al. (2006) methodology; the joint, sub-view objective function is then Equation 6:
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Similar to LM3L the objective function is Equation 7:
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This objective design can be solved using gradient descent solver; to enforce the
requirements of Uk � 0 and Vk � 0 we leverage the decomposition Uk = ΓT

k Γk and
Vk = NT

k Nk and find the gradient of the objective function with respect to the decom-
posed matrices Γk and Nk. Weights per view can be estimated using the same procedure
as in LM3L. The implementation of distance in the multi-view case, i.e. implementa-
tion of distance used in the k-NN algorithm is just the weighted average of Equation 5
over all views.

3. Conclusion

Optimal parameters are found for the LM3L algorithm LINEAR data (following a stan-
dard 5-fold cross-valdiation procedure). The trained classifier is applied to the test data,
the confusion matrices resulting from the application to LINEAR data are presented as
an example in Table 1:

The classification of variable stars relies on a proper selection of features of interest
and a classification framework that can support the linear separation of those features.
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Table 1. LINEAR Confusion Matrix via LM3L
Error Rate RL (ab) δ S / SP Al RL (c) CB Miss

RR Lyr (ab) 0.9927 0 0 0.00648 0.0009 0
δ Scu / SX Phe 0.0370 0.9259 0 0 0 0.037

Algol 0.0073 0 0.7737 0 0.218 0
RR Lyr (c) 0.0485 0 0.0027 0.9434 0.0054 0

Contact Binary 0.0034 0 0.0377 0.0011 0.9577 0

Features should be selected that quantify the signature of the variability, i.e. its’ struc-
ture and information content. To support the set of high-dimensionality features, or
views, multi-view metric learning is investigated as a viable design. Multi-view learn-
ing provides an avenue for integrating multiple transforms to generate a superior clas-
sifier. Future research will include methods for addressing high dimensionality matrix
data (e.g. SSMM), applying the designed classifier (LM3L) to the datasets, improving
the parallelization of the design presented, and implementing community standard work
arounds for large dataset data (i.e., on-line learning, stochastic/batch gradient descent
methods, k-d tree... etc.).
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