
stginga: Ginga Plugins for Data Analysis and Quality Assurance of
HST and JWST Science Data

Pey Lian Lim,1 and Eric Jeschke2

1STScI, Baltimore, MD, USA; lim@stsci.edu

2NAOJ, Hilo, HI, USA

Abstract.

stginga1 is an image visualization package to assist in data analysis and quality
assurance of science data from Hubble Space Telescope (HST) and James Webb Space
Telescope (JWST). It is based on the Ginga2 toolkit for building scientific viewers.
In this article, we will describe the main plugins developed with stginga. We also
discuss the basic outline of writing a Ginga plugin, with pointers to documentation and
examples.

1. Introduction

Ginga (Jeschke et al. 2015) is a Python package that implements a toolkit for building
scientific viewers. It provides a reference viewer, which features a plugin architecture
in which nearly every graphical feature of the program is implemented by a Python
plugin. By implementing some new plugins for the HST and JWST data analysis and
quality assurance tasks, and combining these with a curated selection of the distributed
“stock” plugins, we were able to fairly quickly develop a tool for use in the HST and
JWST community.

The reference viewer separates image data into virtual holding pens called chan-

nels, named and organized by the user. Plugins are categorized as global or local. A
global plugin applies to all images across all channels: only one instance can be opened
in the whole Ginga session, whereas a local plugin is associated with the channel it is
started from: one instance can be opened per channel and different instances can be
configured separately in the same Ginga session.

2. BackgroundSub

BackgroundSub (see Figure 1) is used to calculate and subtract background value. User
draws a shape (e.g., annulus) to define the region from which background is calculated.
As user modifies the region or changes the parameters in the “Attributes” box, back-
ground value would be recalculated accordingly. Optionally, if a data quality (DQ)

1https://github.com/spacetelescope/stginga (STScI)

2https://github.com/ejeschke/ginga (NAOJ)

1



2 Lim and Jeschke

extension is available, pixels marked as “not good” also can be excluded from calcula-
tions. Subtraction parameters can be saved to a JSON file, which then can be reloaded.

Figure 1. BackgroundSub plugin for background subtraction.

Then, the calculated background can be subtracted off the displayed image in
Ginga. However, the subtracted image only exists in an in-memory cache in Ginga;
if the cache fills up Ginga will eject the image if it is not being viewed. To save the
subtracted image out to a different file, use the SaveImage plugin in Ginga. As of this
writing, BackgroundSub only handles constant background, therefore unsuitable for
when background has a gradient or a pattern.

3. BadPixCorr

BadPixCorr3 is a plugin for performing interactive bad pixel correction on an image.4

Currently, it only handles fixing a single bad pixel or bad pixels within a circular region.
The bad pixel(s) can be filled either by a user-defined constant, a constant calculated
from an annulus (not unlike BackgroundSub), or Scipy griddata interpolation using
the annulus. If DQ extension is present, the corresponding DQ flags will also be set to
the given new flag value (default is 0 for “good”).

4. DQInspect

DQInspect (see Figure 2) is used to visualize the associated DQ array stored as an
HDU within an image. It shows the different DQ flags (top table) that went into a
selected pixel (marked by a red “x”) and also the overall mask of the selected DQ
flag(s) (blue/covered pixels; bottom table). For overall mask, when multiple flags are
selected, each flag is assigned a different mask color at a reduced opacity for each. User
has the option to customize flag definitions for different instruments.

3Figure not shown here but available in the corresponding poster.

4See BackgroundSub for comments on JSON support and in-memory cache handling of corrected image.



stginga: Ginga Plugins for Data Analysis & Quality Assurance of... 3

Figure 2. DQInspect plugin for data quality inspection.

5. SNRCalc

SNRCalc3 is used to calculate Signal-to-Noise Ratio (SNR) and Surface Background
Ratio (SBR) on an image. Given the selected science (S) and background (B) regions,
SBR is defined by Ball Aerospace (Acton 2015) as the median of S divided by the
standard deviation of B. If the image has an accompanying error (E) extension, SNR
can also be calculated by dividing S by E over the same region and then computing its
minimum, maximum, and mean.

While SNR is more popular, SBR is useful for an image without existing or reliable
error values. User may define a minimum limit for SBR check, so that the GUI can
provide a quick visual indication on whether the selected region achieves the desired
SBR or not. As part of the statistics, mean background value is also provided albeit
not used in SBR nor SNR calculations. Optionally, if DQ extension is available, pixels
marked as “not good” can be excluded from calculations as well. Calculated values can
be saved in the image header using the “Update HDR” button.4

6. Writing a Ginga plugin

Instructions for writing a plugin is available at https://bit.ly/writeplugins. Ex-
isting plugins in Ginga and stginga code repositories can be used as examples. It is
recommended that you play with the existing ones and choose one that is the closest to
your desired functionality as a starting point.

6.1. Local plugins

A local plugin at it’s simplest is just a Python class defined in a file. The class should in-
herit from ginga.GingaPlugin.LocalPlugin and provide __init__(), build_gui(), start(),
and stop() methods. These methods are used to initialize the plugin, build the user in-
terface, and to do any necessary tasks at the start and stop of the plugin, respectively.
Typically you would also want to implement the redo() method, which is called when
there is new data loaded into the viewer to which the running plugin should respond.



4 Lim and Jeschke

Inside the file, any modules that are available in the user’s Python environment
may be imported and used, allowing huge flexibility in the kinds of things a plugin
can do. It can open files, connect to sockets or other communication frameworks, or
call a myriad of astronomical Python packages. It also has a reference to the viewer
with which it is associated so it can access the viewer data (as a Numpy array) and
can manipulate canvas overlays with graphics on the viewer (as shown in the sections
above) or manipulate the viewer settings (e.g., panning, scale, color map).

6.2. Global plugins

Writing a global plugin is similiar to the process for writing a local one. The difference
is that the plugin ostensibly must be able to update it’s state when the user switches
channels, since there only one instance of the plugin is allowed to be open; There are
callbacks for which you can register to be alerted of these events. Otherwise, the API
is quite similar to that of a local plugin.

6.3. Distributing plugins

When you want to distribute your plugin(s) the best way is to probably use the ginga-

plugin-template.5 This template allows one or more plugins to be installed as a separate
package, and be discovered by the reference viewer when it starts up. If you want more
control over the layout of the viewer and the set of included plugins, you can follow the
path blazed by stginga and make your own startup script to for the reference viewer
with a curated mix of the stock plugins with your own.

7. Conclusion

stginga utilizes Ginga plugins to support HST and JWST data analysis, which in-
cludes background subtraction, bad pixel correction, DQ flags inspection, and signal-
to-noise calculations.

Writing Ginga plugins can be an expedient way to develop graphical data analysis
and quality assurance tasks, by leveraging the combination of Python, a lean Ginga
plugin API, and the burgeoning number of open-source astronomical Python modules.

Both stginga and ginga are installable via pip. Alternately, if you use conda,
they are also available on AstroConda,6 in addition to ginga being in conda-forge
too.

References

Acton, S. 2015, Image Pre-Processor SBR, Private communications
Jeschke, E., Inagaki, T., & Kackley, R. 2015, in Astronomical Data Analysis Software and

Systems XXIV, edited by A. R. Taylor, & E. Rosolowsky (ASP). Vol. 495

5https://github.com/ejeschke/ginga-plugin-template (NAOJ)

6https://astroconda.readthedocs.io (STScI)


