
Development of auto-multithresh: an automated masking algorithm
for deconvolution in CASA

Takahiro Tsutsumi,1 Amanda Kepley,2 IIsang Yoon,2 and Urvashi Rau1

1National Radio Astronomy Observatory, Socorro, NM, USA;
ttsutsum@nrao.edu

2National Radio Astronomy Observatory,Charlottesville, VA, USA

Abstract.
A general purpose automated masking algorithm for deconvolution was developed

in order to support automated data processing in ever-increasing data volumes of the
current and future radio interferometers as described by Kepley et al in this meeting
(Kepley et al. (2019)). In this presentation, we describe some technical details of the
implementation of the automated masking algorithm named, “auto-multithresh", which
was integrated into the refactored imaging task (tclean) in CASA. We also discuss our
approach that we took for the development, which loosely follows the iterative model,
so that the implementation is refined progressively for its functionality and performance
based on testing and updated requirements throughout prototyping in Python to the final
production in C++.

1. Auto-multithresh algorithm

A basic concept is to mimic interactive masking done experienced astronomers during
CLEAN. A user can control the parameter setting through the quantities such as rms
noise, sidelobe level, and synthesized beam size. Figure 1 shows some of the key
features of the process and more detailed description can be found in the CASA Docs1.

1.1. The Key features

The following are the key features of the algorithm.

• Iterative (run at the beginning of minor cycle)

• Threshold based mask created using a current residual image

• “Prune" : mechanism to remove unrealistic (or noise like) mask regions – regions
smaller than user-specifiable parameter in fractions of synthesized beam

• “Grow": grow the threshold based mask to include low surface brightness regions
using a binary dilation algorithm

1e.g. for CASA 5.4.0 documentation: https://casa.nrao.edu/casadocs/casa-5.4.0/synthesis-imaging/masks-
for-deconvolution

1

mailto:ttsutsum@nrao.edu


2 Tsutsumi et al.

!"#$%&'()*+$,-

./,0#-(&12&3#'$"(4

./,0#-(&12&35'164

7*",-&0,)8&9:1"%1$';&

<(#(,%&21'

(,:=&0*"1'&:>:-(

Figure 1. Auto-multithresh process (showing only some of key features)

• Handle negative (absorption) and positive (emission) features. It tracks the two
features separately to avoid interaction.



Development of auto-multithresh: an automated masking in CASA 3

• For cube imaging, allow to skip channels for no mask or no mask change from
the previous iteration

2. Implementation Details

The prototype algorithm development was done in Python. The modular design of
the refactored imaging code (C++ and Python) allows flexible implementation. The
Figure 2 shows the code structure of the refactored imager. A wrapper Python class,
PySynthesisImager, built on the top of the collection of the synthesis imaging Python
tools. The tclean CASA task, which provide all imaging functionality, is built on top
of PySynthesisImager (see Figure 2). Since each of the tools has one-to-one mapping
of C++ classes and methods, prototyping by Python scripts can be easily accomplished
using PySynthesisImager.

The final implementation of the algorithm was done in C++. The auto-multithresh
algorithm is implentented in general mask handler class inside the refactor imaging
code. It is launched from deconvolver to be in sync with its iteration control.

Figure 2. Implementation of auto-multithresh in CASA.

3. Development Process

The main driver of this development was coming from the ALMA pipeline. There
was a research aspect to explore and refine an algorithm that work for the real ALMA
data while meeting various time constraints including the CASA release schedules.
It was necessary to adopt a development process slightly different from the standard
CASA development, which generally completes within a single CASA development
cycle. To do this we had a team of a dedicated developer for implementation and
a scientist who led in design and verification as well as other testers for additional



4 Tsutsumi et al.

scientific verifications. The process of this development follows (loosely) the iterative
model.

1. Define requirements

2. the initial prototype development

3. Initial implementation

4. Verification/Validation Testing (performance, scientific correctness)

5. Amend or add to the requirements, if necessary

6. Implementation of additional features, mitigation to performance issues

7. repeat 4 -6

The adopted process generally worked well to deliver of the necessary function-
ality on time with flexibility of adding new features or making corrections in next it-
erations. However, one of the disadvantages was that the significant dedicated time by
the key members for both code development and verification/validation testing was re-
quired. As for future projects of this nature, the observatory is making an effort to plan
to separate resources for production from R&D efforts.

4. Current Status

The algorithm is availablesince CASA 5.0 release in tclean CASA task and various
improvements were made ever since. It has been used in the production ALMA pipeline
for Cycle 5 and beyond. While the original motivation was to be able use in ALMA
imaging, it has been shown that the algorithm works on the data from other telescopes
such as JVLA and ATCA

5. Future Development

For CASA 5.5 release, we plan to complete a bulk of the development, with introduction
of a new noise estimate will be implemented to improve masking of absorption and
extended emission. As a future research, we plan to explore to improve code efficiency
by moving a part of the algorithm deeper inside the deconvolution algorithms

References

Kepley, A., Tsutsumi, T., Brogan, C., Indebetouw, R., Yoon, I., & Mason, B. 2019, in ADASS
XXVIII, edited by TBD (San Francisco: ASP), vol. TBD of ASP Conf. Ser., TBD


