
The JWST Data Calibration Pipeline

Howard Bushouse, Jonathan Eisenhamer, and James Davies

Space Telescope Science Institute, Baltimore, MD, USA; bushouse@stsci.edu

Abstract. STScI is developing the software systems that will provide routine cal-
ibration of the science data received from the James Webb Space Telescope (JWST).
The processing uses an environment provided by a Python module called stpipe that
provides many common services to each calibration step, relieving step developers from
having to implement such functionality. The stpipe module provides common con-
figuration handling, parameter validation and persistence, and I/O management. Indi-
vidual steps are written as Python classes that can be invoked individually from within
Python or from the stpipe command line. Any set of step classes can be configured
into a pipeline, with stpipe handling the flow of data between steps. The stpipe envi-
ronment includes the use of standard data models. The data models, defined using yaml
schema, provide a means of validating the correct format of the data files presented to
the pipeline, as well as presenting an abstract interface to isolate the calibration steps
from details of how the data are stored on disk.

1. Introduction

STScI has developed and maintained data calibration pipelines for all of the HST sci-
entific instruments and is now in the process of developing the pipelines that will be
used for the James Webb Space Telescope (JWST). The HST pipelines were developed
over a span of more than 20 years and hence show an evolution in both software lan-
guages and design. The pipelines for each instrument – a total of 11 over the history
of HST — were written mostly independently of one another and used an assortment
of languages, ranging from IRAF SPP to Fortran, C, and Python. This made main-
tenance and enhancement rather difficult, and precluded much code sharing between
instruments. The HST pipelines also used monolithic, procedural designs, with very
little modularity. This approach worked as long as data were allowed to flow uninter-
rupted from beginning to end, but made it very difficult, if not impossible, to start or
stop processing midstream, skip one or more steps, or insert additional steps.

The JWST calibration pipelines are being developed using a completely new de-
sign approach using mostly Python. There is a common framework for all 5 of the
scientific instruments, with extensive sharing of routines and a common code base. The
new design allows for flexibility in swapping in and out specific processing steps, easily
changing the ordering of steps within pipelines, and the ability for astronomers to in-
sert custom routines. The calibration pipelines will be distributed to astronmers, giving
them the ability to rerun and refine the processing of their observations. The highly
modular and flexible nature of the design will allow them to add custom processing
steps, either as part of the pipeline itself or as standalone routines that are run on the
data and then reinserted back into the pipeline flow. The calibration pipeline package

1

mailto:bushouse@stsci.edu

2 Bushouse, Eisenhamer, and Davies

has been designed to be as light-weight and self-contained as possible in order to make
it easy for users to install and run. The only external interface required is to our Cali-
bration Reference Data System (CRDS), which is used to supply reference data needed
by the calibration steps. The CRDS server at STScI will accept requests for reference
files from the client on an astronomer’s home system and automatically download the
requested files to their systems for use locally.

2. stpipe

The central nervous system of the JWST calibration pipeline environment is a Python
module called stpipe. stpipe manages individual processing steps that can be com-
bined into pipelines. The stpipe environment provides functionality that is common
to all steps and pipelines so that they behave in a consistent manner. It provides for
running steps and pipelines from the command line, parsing of configuration settings,
composing steps into pipelines, file management and data I/O between pipeline steps,
an interface to the CRDS, and logging.

Each step is embodied as a Python class, with a pipeline being composed of mul-
tiple steps. Pipelines can in turn be strung together, just like steps, to compose an
even higher-order flow. Steps and pipelines can be executed from the command-line
using stpipe, which is the normal mode of operations in the production environment.
Step and pipeline classes can also be instantiated and executed from within a Python
shell, which provides a lot of flexibility for developers when testing the code and to
astronomers who may need to tweak or otherwise customize the processing.

When run from the command line, stpipe handles the parsing of configuration
parameters, which can be provided either as arguments on the command line or within
configuration files. Configuration files use the well-known ini-file format and stpipe
uses the ConfigObj library to parse them. stpipe handles all of the file I/O for each
step and the passing of data between pipeline steps, as well as providing access within
each step to a common logging facility. It also provides a common interface for all
steps to reference data files that are stored in the CRDS. Having all of these functions
handled by the stpipe environment relieves developers from having to include these
features in each step and provides a consistent interface to users as well.
stpipe is used to execute a step or pipeline by providing either the class name

of the desired step/pipeline or a configuration file that references the step/pipeline class
and provides optional argument values. An example that directly calls a class is:

> strun jwst.pipeline.SloperPipeline input.fits --output_file="myimage.fits"

The same thing can be accomplished by specifying a config file, e.g.:

> strun sloper.cfg input.fits

where sloper.cfg contains:

name = "SloperPipeline"
class = "jwst.pipeline.SloperPipeline"
output_file = "myimage.fits"
save_calibrated_ramp = True

Steps and pipelines can be called from Python using the class’ “call” method:

>>> from jwst.pipeline import SloperPipeline
>>> result=SloperPipeline.call(’input.fits’, config_file=’sloper.cfg’)

The JWST Data Calibration Pipeline 3

The stpipe logging mechanism is based on the standard Python logging frame-
work. The framework has certain built-in things that it automatically logs, such as
the step and pipeline start/stop times, as well as platform information. Steps can log
their own specific items and every log entry is time-stamped. Every log message that’s
posted has an associated level of severity, including DEBUG, INFO, WARN, ERROR,
and CRITICAL. The user can control how verbose the logging is via arguments in the
config file or on the command line.

3. Steps and Pipelines

Steps define parameters, their data types (in “configspec” format), and default values.
As mentioned earlier, users can override the default parameter values by supplying val-
ues in configuration files or on the command-line. Steps can be combined into pipelines,
and pipelines are themselves steps, allowing for arbitrary levels of nesting.

Simple linear pipelines can be constructed as a straight sequence of steps, where
the output of each step feeds into the input of the next. These linear pipelines can be
started and stopped at arbitrary points, via arguments supplied by the user, with all of
the status saved to disk and then resumed later if desired. More complex (non-linear)
pipelines can be defined using a Python function, so that the flow between steps is
completely flexible. Because of their non-linear nature, these types of pipeline can not
be started or stopped mid-stream. Both types of pipelines, however, allow the user to
skip steps by supplying configuration overrides.

Step configuration files can also specify pre- and post-hooks, to introduce custom
processing into the pipeline. The hooks can be Python functions or shell commands.
This allows astronomers to examine or modify data, or insert a custom correction, at
any point along the pipeline without needing to write their own Python code.

Excerpts (for brevity) of a pipeline are shown below. In this example, the input
data is modified in-place by each processing step and the results passed along from one
step to the next. The final result is saved to disk by the stpipe environment. Each
pipeline subclass inherits from the Pipeline class. The subclass defines the Steps that
will be used so that the framework can configure parameters for the individual Steps.
This is done with the step_defs member, which is a dictionary that maps step names
to step classes. This dictionary defines what the Steps are, but says nothing about their
order or how data flows from one Step to the next. That is defined in Python code in
the Pipeline’s process method. By the time the Pipeline’s process method is called,
the Steps in step_defs will be instantiated as member variables.

from jwst.stpipe import Pipeline
from jwst.dq import dq_step
from jwst.ramp import ramp_step

the pipeline class
class SloperPipeline(Pipeline)

step definitions
step_defs = {"dq" : dq_step.DQInitStep,

"ramp_fit" : ramp_step.RampFitStep}

the pipeline process
def process(self, input):

log.info("Starting calwebb_sloper ...")
input = self.dq(input)

4 Bushouse, Eisenhamer, and Davies

only apply reset and lastframe to MIRI data
if input.meta.instrument.name == "MIRI":

input = self.reset(input)
input = self.frame(input)

input = self.jump(input)
save the results so far
if self.save_cal:

self.save_model(input, "ramp"))
input = self.ramp_fit(input)
log.info("... ending calwebb_sloper")
return input

4. Data Models

The burden of loading, parsing, and interpreting the contents of FITS data files usually
falls to the processing code that’s trying to do something with the data. For the JWST
calibration pipelines, the stpipe environment takes care of all the file I/O, leaving the
developers to concentrate on processing the data. This is accomplished through the
use of software data models. The data models allow the on-disk representation of the
data to be abstracted from the pipeline steps via the I/O mechanisms built into stpipe.
The use of data models also has the benefit of eliminating or at least being able to
manage dependencies between the various steps. Because all of the actual science data
and its meta data are completely self-contained within a model, each step has all of
the information it needs to do its work. If a particular processing step changes the
overall format or content of the data in some way, the result is saved in a different
type of data model. Each step can perform a check to ensure that the input it’s been
given conforms to the type of model expected in that step. Any inconsistencies will be
detected immediately and the process will shutdown with a warning to the user, rather
than the undesirable behavior of having a step crash because the input data were not
compatible.

The models interface currently reads and writes FITS files, as well as the Advanced
Scientific Data Format (ASDF) file format developed by STScI. The interface provides
the same methods of access within the pipeline steps whether the data are on disk or
already in memory. Furthermore, the interface can decide the best way to manage
memory, rather than leaving it up to the step code. The use of data models also isolates
the processing code from future changes in file formats or keywords. Each model is a
bundle of array or tabular data, and meta data, with the model structure defined using
schemas in YAML format. The model schemas are modular, such that a core schema
that contains elements common to all models can include any number of additional
sub-schema that are unique to one or more particular models.

Step code loads a data model using a simple statement like:

im = datamodels.ImageModel(input)

stpipe determins whether “input” is a model already in memory or a file on disk. If
the latter, it loads the file into an ImageModel. The step code then has direct access to
all attributes of the ImageModel, such as the data, dq, and error arrays defined in the
ImageModel schema. If only a single step is executed, stpipe saves the returned data
model to disk. If part of a pipeline, stpipe passes the returned data model in memory
to the next step and saves the final result at the end of the pipeline.

