
Computational Astrophysics with Go

Pramod Gupta,1

1Department of Astronomy, University of Washington, Seattle, Washington,
USA; psgupta@uw.edu

Abstract. Go is a relatively new open-source language from Google. It is a compiled
language and so it is quite fast compared to interpreted languages. Moreover, it is based
on a design principle of simplicity. In this paper, I discuss the suitability of Go for
Computational Astrophysics based on using Go for Monte Carlo Radiative Transfer. I
find that even though the language was not designed for scientific computing, its speed
and simplicity make Go an excellent language for Computational Astrophysics.

1. Introduction

Computational astrophysicists have traditionally used compiled languages like C, C++
or Fortran for computation intensive research areas such as radiative transfer or N-body
simulations. Since these languages are compiled, they have excellent run time perfor-
mance. However, compared to interpreted languages like Python, they are relatively
difficult to use due to lack of automatic memory management and run time checks.

The Go programming language is compiled so it has excellent performance. More-
over, it also has automatic memory management (garbage collection) and run time
checks. Hence, one is lead to the question: Is Go a practical language for Compu-
tational Astrophysics? In this paper I propose an answer to this question based on my
experience with using Go for Monte Carlo Radiative Transfer.

2. Go

Go was first released in 2009 and version 1.0 was released in 2012. Hence it is a rela-
tively new language. The language is from Google but it is an open source language. Its
creators are Robert Griesemer, Rob Pike and Ken Thompson. (Ken Thompson is a Tur-
ing award winner and the creator of UNIX.). The standard book on Go is "The Go Pro-
gramming Language" (Donovan & Kernighan (2015)). One of the authors of this book
is the same Kernighan who wrote the "The C Programming Language" (Kernighan &
Ritchie (1988)). Hence, Go has some very distinguished computer scientists associated
with it.

Go is a compiled, statically typed language with built-in concurrency. Simplicity
was an important design goal for the creators of Go. Due to the scale of Google, they
were also concerned with improving performance by reducing compilation times and
reducing running times. Also to increase reliability, Go has features which are com-
mon in interpreted languages like Python but which do not exist in compiled languages

1

mailto:psgupta@uw.edu

2 Gupta

like C, C++ and Fortran. These are features such as automatic memory management
(garbage collection) and run time checks (e.g. to detect array index out of bounds).

As noted in the previous paragraph, Go has several positive features. However,
the question remains: Is Go a practical language for computational astrophysics? The
only way to find out is to implement computational astrophysics code in Go. Hence, I
implemented a Monte Carlo Radiative Transfer program in Go.

3. Monte Carlo Radiative Transfer

We consider Monte Carlo Radiative Transfer (MCRT) with scattering and absorption
in spherical layers in an exoplanet atmosphere. An introduction to MCRT with polar-
ization in a spherical geometry is given in Code & Whitney (1995). A parallel beam of
photons is incident on the planet’s atmosphere. An incoming photon enters the atmo-
sphere with a Stokes vector (I,Q,U,V) = (1, 0, 0, 0). It then travels an optical depth τ
till it gets scattered or absorbed. The optical depth τ is given by τ = − log(1 − ξ) where
ξ is a random number between 0 and 1. The probability of the photon getting scattered
is equal to the single scattering albedo. If the photon gets scattered, then the new Stokes
vector is the product of a 4 × 4 matrix and the old Stokes vector. The random direction
of scattering is dependent on a probability distribution based on the same matrix. A
photon which reaches the surface of the planet gets absorbed or reflected back by the
Lambertian surface. Hence, a photon either gets absorbed within the atmosphere, or it
gets absorbed on the surface of the planet or it exits at the top of the atmosphere. If the
photon exits at the top of the atmosphere then its exiting direction (θ, ϕ) is recorded.
(Here θ and ϕ are the usual spherical polar coordinates.) For accurate results, a large
number of incoming photons have to be simulated. Hence the program has loops with
a large number of iterations.

As seen in the previous paragraph, the MCRT code uses multi-dimensional arrays,
random numbers and large number of iterations for multiple loops. These are typical
parts of a computational astrophysics programs. Hence, even though the present paper’s
conclusions are based on this program, they are more generally applicable to other
computational astrophysics programs such as N-body programs.

4. Experience with Go

As noted above, simplicity was a design goal for the Go. Unlike most common lan-
guages of the last two decades, Go has no inheritance, no templates/generics, and no
exceptions. The language was designed to be easy to learn for users with prior expe-
rience in the commonly used languages such as C, C++, Java, Python etc. Hence it is
easy for computational astrophysicists to learn the language.

Go does automatic memory management (garbage collection) and run time checks
such as array bounds checking. This increases the running time (compared to C, C++,
and Fortran) but it also increases the reliability of the code. Since Go is a compiled
language, the run time performance is very good compared to interpreted languages.
Go is very strict about types. Even for numerical types, there is no promotion of int64
to float64. For example if x is a float64 variable and y is a int64 variable then
x=x+y will not compile. One must use x=x+float64(y). This strict typing prevents
various errors. Since each line is a statement, one does not get the kind of odd error

Computational Astrophysics with Go 3

messages which one can get in C and C++ by missing a semicolon. Since all variables
are initialized to a default value of the type (e.g. default value for int64 is 0), one does
not get the run time errors due to uninitialized variables. Another feature of Go is that
a function can return multiple values. This makes it possible to have a clear separation
between input parameters and output parameters. For example, in below code, x and y
are the input parameters and a and b are the output parameters:

func some_function(x float64, y float64) (a float64, b float64){
//do some calculations
return a, b

}

Another function can call some_function() like below:

a, b = some_function(x, y)

Multi-dimensional arrays are essential to much of computational astrophysics.
Passing multidimensional arrays to functions or subroutines is a common step in most
programs. For passing such arrays to functions, C++ requires the sizes for all dimen-
sions (except the first) to be known at compile time. Similarly, Go requires the sizes of
all the dimensions to be known at compile time. However, Go has slices which are like
dynamic arrays. Hence, one can use a slice of slices (i.e. dynamic array of dynamic
arrays) to create a 2 dimensional array of float64 (similar to double type in C and
C++ and double precision type in Fortran). The code looks like below:

func make2DsliceFloat64(XSize int, YSize int) ([][] float64){
var i int
//make 2D slice (like array of arrays)
// Allocate the top-level slice.
a := make([][]float64, XSize)
// Allocate the next-level slices.
for i=0; i <XSize; i++ {

a[i] = make([]float64, YSize)
}
return a

}

Here make2DsliceFloat64() creates and returns a slice of slices. In the calling
program, one would call make2DsliceFloat64() as below to make 3 x 3matrix for
the float64 type:

var matrix1 [][]float64
matrix1 = make2DsliceFloat64(3, 3)

Since Go has garbage collection, the user does not need to remember to free the mem-
ory used by matrix1. The above code is similar to the Python numpy statement a
= numpy.zeros((3,3)). Note that since Go does not have templates/generics, one
would need to write another function make2DsliceInt64() for the int64 type. We
can pass matrix1 to a function trace() like below

trace(matrix1, 3, 3)

4 Gupta

Also if we pass matrix1 to a function then the function can modify the elements of
matrix1. Built-in variables of type string, int64, float64 etc. and struct vari-
ables are passed by value so (just like in C) we must use pointers if we want to modify
the variable in the function.

The Go compiler has fast compile times and it gives helpful and readable error
messages. The executable produced by the Go compiler is statically linked which
means that you can compile Go code on your machine, transfer the executable to an-
other machine and it will run fine as long as both machines have the same operating
system. The other machine does not need to have Go installed and it does not need any
libraries other than those which are part of the operating system. This is very conve-
nient if you develop your code on your desktop or laptop and then run the executable
on a remote machine (e.g. a supercomputer). Go also has built-in features to run code
concurrently.

Go has a standard code formatting tool gofmt. After formatting code with gofmt,
everyone’s code looks the same. This makes it easier to read code written by others.
The language has excellent documentation and a large number of built-in libraries. The
built-in packages for complex numbers and random numbers are especially useful for
scientific computing. The external Gonum project has additional scientific computing
packages. However, compared to Python, the number and scope of scientific computing
packages is quite limited.

5. Conclusions

Go can be learned quickly by computational astrophysicists since they are already know
C, C++ or Fortran. Automatic memory management, run time checks, and strict typ-
ing, reduce the code development time. Since it is a compiled language, the run time
performance is very good. Due to Go’s newness and since it is not targeted at scientific
computing, there are a limited number of scientific computing libraries. Hence, Go may
not be a feasible choice for projects which depend on specialized libraries. However,
for projects which are not dependent on such libraries (such as Monte Carlo Radia-
tive Transfer and N-body simulations), Go is an excellent language for computational
astrophysics.

References

Code, A. D., & Whitney, B. A. 1995, Astrophysical Journal, 441, 400
Donovan, A. A., & Kernighan, B. W. 2015, The Go Programming Language (Academic Press)
Kernighan, B. W., & Ritchie, D. M. 1988, The C Programming Language (Prentice Hall), 2nd

ed.

