
New Python Developments to Access CDS Services

Matthieu Baumann,1 and Thomas Boch2
1CNRS Observatoire de Strasbourg, Strasbourg, Alsace, France;
matthieu.baumann@astro.unistra.fr

2CNRS Observatoire de Strasbourg, Strasbourg, Alsace, France

Abstract.
We will present recent developments made in the frame of the ASTERICS project

and aimed at providing Python interface to CDS services and Virtual Observatory stan-
dards. Special care has been taken to integrate these developments into the existing
astropy/astroquery environment.
A new astroquery.cds module allows one to retrieve image or catalogue datasets avail-
able in a given region of the sky described by a MOC (Multi Order Coverage map)
object. Datasets can also be filtered through additional constraints on their metadata.
The MOCPy library has been upgraded: performance has been greatly improved, unit
tests and continuous integration have been added, and the integration of the core code
into the astropy.regions module is under way. We have also added an experimental sup-
port for creation and manipulation of T-MOCs which describe the temporal coverage
of a data collection.

1. Python Packages Presentation

1.1. MOCPy (Boch & Baumann 2015): a Library Handling the Creation and
Manipulation of MOCs

New features and improvements have been added to the library:

• MOCPy (Boch & Baumann 2015) has been optimized and tends to use numpy’s
broadcasting feature as much as possible. Creating a MOC from a list of astropy
SkyCoord is a lot faster thanks to the vectorization involved when operations are
directly done on numpy arrays.

The following code shows the implementation of from_lonlat responsible for
creating a MOC from lon and lat astropy quantities at a given order. This code:

– Uses astropy-healpix to get the HEALPix cells where the (lon, lat) co-
ordinates are located.

– Build a N × 2 numpy array storing the intervals of the HEALPix cells at a
given order.

No Python loops over the quantities are involved here as it is encouraged to per-
form operations directly on numpy arrays.

1

mailto:matthieu.baumann@astro.unistra.fr


2 Baumann, and Boch

• Dependencies to healpy have been removed. We now use astropy-healpix and
therefore have changed the licence of MOCPy (Boch & Baumann 2015) from
GPL to BSD-3.

• A new serialize method has been added, taking an optional format argument
that can be set to fits or json.

• New methods fill and perimeter have been implemented. These methods are
responsible for plotting the MOC (resp. its perimeter) on a matplotlib axe using
a projection defined by an astropy.wcs.WCS object.

Figure 1. Union of the MOCs between GALEXGR6/AIS/FUV and SPITZER

• A new TMOC class handles the creation and manipulation of temporal MOCs.
A from_times method creates a T-MOC object from an astropy.time.Time
object. As for the spatial MOCs, it is possible to serialize a T-MOC, compute
the intersection, union, difference between several T-MOCs as well as use them
to filter an astropy.time.Time object.

Figure 2. Example of a T-MOC created from II/285

First observation: 1978-05-10 20:09:28.672
Last observation: 2004-04-22 16:56:36.350
Total duration: 227.424 jd
Max order: 14



New Python Developments to Access CDS Services 3

1.2. astroquery.cds (Baumann 2018a): a New Module for Retrieving Data Col-
lections Based on Region and/or Meta-data Queries

astroquery.cds (Baumann 2018a) has been merged into the master branch of astroquery
in July the 23th and will be available for its next release (v0.3.9). This module requests
the CDS MOCServer, a server storing MOCs and meta-data of ' 20000 data collec-
tions. This package offers two methods (see the module’s documentation (Baumann
2018a) for more details):

• query_region retrieves the collections having their observations in a specific
region. Regions can be expressed as mocpy.MOC objects, circle or polygon sky
regions.

• find_datasets retrieves the collections based on a constraint on their meta-
data.

These two methods return by default an astropy.table.Table containing the
meta-data of one collection per row. An optional argument return_moc=True can be
used to directly retrieve the MOC (a mocpy.MOC object) of the matching collections.

Below 1 is an example of an astropy table returned by query_region and filtered
to select only the vizier tables having between 75000 and 100000 sources. The meta-
data shown here are obs_id, obs_title and dataproduct_type. For a list of all the
possible meta-data returned by the cds module, please refer to the page 18 of the HiPS
IVOA paper (Fernique et al. 2017).

Table 1. Example of an astropy table returned by astroquery.cds

obs_id obs_title dataproduct_type

I/208/ppm3 The 90000 stars Supplement to the PPM Catalogue catalog
(Roeser+, 1994) (ppm3)

I/237/catalog The Washington Visual Double Star Catalog, 1996.0 catalog
(Worley+, 1996) (catalog)

I/276/catalog Tycho Double Star Catalogue (TDSC) catalog
(Fabricius+ 2002) (catalog)

2. State of the Art of the CDS Python Tools

The following image 3 results from a notebook (Baumann 2018b) combining different
Python packages, most of them being developed by the CDS team through the past
years. It is available on the cds-astro github repository as an example for astronomers.
This script:

1. Retrieves two MOCs from the MOCServer (Baumann 2018a).

2. Computes their intersection (Boch & Baumann 2015) and shows the resulting
MOC on an aladin-lite view (ipyaladin).



4 Baumann, and Boch

3. Searches for a vizier table in optical regime having some observations in this
region (Baumann 2018a).

4. Retrieves the table using astroquery.vizier.

5. Filters the table to only keep the observations lying in the MOC (Boch & Bau-
mann 2015) and adds the filtered table to the aladin view (ipyaladin).

Figure 3. Aladin-lite view showing a Vizier table filtered by a MOC

3. Future Improvements

• MOCPy (Boch & Baumann 2015) is currently being integrated into astropy-
regions. New classes, MOCSkyRegion and MOCPixelRegion will be imple-
mented.
MOCSkyRegion is the equivalent of the mocpy.MOC class, therefore it will contain
all its features (serialization, intersection, ...). A MOCPixelRegion is a MOC sky
region projeted using an astropy WCS object.

• query_region from astroquery.cds will be upgraded to accept MOCSkyRegion
objects.

• The query_regionmethods of both astroquery Simbad and Vizier should accept
MOCSkyRegion too so that Simbad and Vizier tables can be filtered by MOCs.

References

Baumann, M. 2018a, astroquery.cds documentation page,
https://astroquery.readthedocs.io/en/latest/cds/cds.html

— 2018b, Notebook example illustrating the state of the art of the CDS Python tools,
https://github.com/cds-astro/ADASS-IVOA18

Boch, T., & Baumann, M. 2015, Python library to easily create and manipulate MOCs (Multi-
Order Coverage maps) , https://github.com/cds-astro/mocpy

Fernique, P., Allen, M., Boch, T., Donaldson, T., Durand, D., Ebisawa, K., Michel, L., Sal-
gado, J., & Stoehr, F. 2017, HiPS - Hierarchical Progressive Survey Version 1.0, IVOA
Recommendation 19 May 2017. 1708.09704

https://astroquery.readthedocs.io/en/latest/cds/cds.html
https://github.com/cds-astro/ADASS-IVOA18
https://github.com/cds-astro/mocpy
1708.09704

