
Development, tests and deployment of web application in DACE

Julien Burnier1, Fabien Alesina2, and Nicolas Buchschacher3
1University of Geneva, Geneva, Geneva, Switzerland;
julien.burnier@unige.ch

2University of Geneva, Geneva, Geneva, Switzerland
3University of Geneva, Geneva, Geneva, Switzerland

Abstract.
The Data and Analysis Center for Exoplanets (DACE) is a web platform based

at the University of Geneva (CH) dedicated to extrasolar planets data visualisation,
exchange and analysis. This platform is based on web technologies using common pro-
gramming languages like HTML and Javascript for the front-end and a Java REST API
for the back-end. Over the last 12 months, the process to maintain, develop, test and
deploy the applications has been dramatically improved to facilitate the maintenance
and the integration of new features. The goal of such automation is to let more time
to focus on development and reduce the duplicated work. To achieve this result, we
migrated our Java application to the Maven software project management and added
unit tests. We implemented a pipeline on GitLab which consists of executing the tests
and deploy the application in a dev environment at every commit. The front-end side is
then tested using the Selenium web browser automation to simulate the user - website
interactions and compare the new results with the old ones. Once all the tests are val-
idated, a manual action on the GitLab interface can be done to deploy the application
on the official web site and we ensure the compatibility of the new features with the
production version. We are currently working to have a very complete set of tests on
both back and front end in order to remove the manual part of production deployment
and to have a fully automated integration of our applications.

1. Introduction

About one year ago, the DACE platform suffered deployment issues and stability.
Sometimes, our team was afraid to go on production because we didn’t deploy new
code since 2-3 months. Also a quick bug fix to deploy was complicated because the
code was not updated since a long time. To facilitate development and deployment we
naturally decided to implement continous integration.

2. Java code with maven and unit tests

The first thing to do was to encapsulate existing code to a project management tool
which manage dependencies and simplify compilation, test and jar/war creation. We
chose maven as it remains the reference on Java. Then we added unit test to existing
code where possible. To do this we followed mvn convention and started using JUnit.

1

mailto:julien.burnier@unige.ch


2 Julien Burnier, Fabien Alesina, and Nicolas Buchschacher

Finally, the idea for backend API for example, was to apply Test Driven Development
when possible.

3. Gitlab - Continuous Integration tool

Then we needed a tool to do continuous integration. Fortunately, other project inside
our university started to use Gitlab. We migrated our code from svn to git and pushed
code inside gitlab. After that, a gitlab-runner must be installed where you want to run
your build. And finally, we added a .gitlab-ci file into every project. You can see an
example of our gitlab file (only with stage Test, Build and staging deployment) on figure
1. With this small configuration file you already have tests runned after each commit

Figure 1. Example Gitlab code

and you’ll receive an email in case of failure. The test and build script is simply mvn
clean install and maven handle the rest. For deployment on staging (which is dev on
our architecture), we do a cp of the war/jar and create a symbolic link to easily rollback
in case of failure. For frontend part, the idea is to deploy via rsync on servers and then
use Selenium.

4. Selenium

Before going to production, web tests should be done to ensure having no bugs and no
regression (same as unit test but on visual part). To do this we use selenium. This tool
simulates user interaction on a website. To facilitate selenium test development, we
adopted Page Object Pattern. The Page object pattern let you split your selenium test
code on each web page. For example, you can do a test on index.html and then click on
about.html and create a test AboutPageTest.java to test this specific page. Example of
home page test on figure 2



Development, tests and deployment of web application in DACE 3

Figure 2. Example Selenium test code

5. Deployment

The deployment is also handled by gitlab. It needs to be defined in .gitlab-ci.yml. On
our side, after every commit, we deploy backend and frontend on dev environment.
Then if everything is ok, the app is released deployed manually on one production
server and after some manual tests, deployed on the other production server. Architec-
ture of DACE servers and deployment process can be seen on figure 3

Acknowledgments. This work has been carried out within the framework of the
National Centre for Competence in Research PlanetS supported by the Swiss National
Science Foundation. The authors acknowledge financial support from the SNSF. This
publication makes use of DACE, a Data Analysis Center for Exoplanets, a platform of
the Swiss National Centre of Competence in Research (NCCR) PlanetS, based at the
University of Geneva (CH).



4 Julien Burnier, Fabien Alesina, and Nicolas Buchschacher

Figure 3. DACE continuous integration process


