Pixel Mask Filtering of CXC Datamodel

Helen He, Mark Cresitello-Dittmar, and Kenny Glotfelty
Smithsonian Astronomical Observatory, Cambridge, MA 02138, USA

Abstract. Data Model (DM) library, a CIAO X-ray analysis package, facilitates a
wide range of "on-the-fly" data manipulation capabilities such as copy, merge, binning
and filtering. The pixel mask filtering of image is integrated into the CIAO region filter-
ing syntax and logic, and thus complements the conventional analytic shapes filtering of
circle, box, etc. The integration allows for the standard operations on combining masks
and analytic shapes such as include, exclude, intersect, and union. The mask is stored
in a data block, referenced by the region filter string in the resulting file’s data subspace.
We will highlight the features and usage of pixel mask filtering in the CIAO software,
and discuss some divergent effects between mask filtering and region shape filtering.

1. Introduction

The CIAO Data Model provides flexible filtering syntax which can be applied to events
files. Pixel mask filtering or mask filtering is a new feature and extends the analytic
shape filtering of DM library. The syntax of mask filtering is denoted by mask tag,
’mask()’, and mask file in "mask(mask-file)".

The mask file is a 2D image/table storing binary data in FITS or an ASCII file
containing 2 or more data columns. The data type of the mask file can be any numerical
(integer or real) values. Therefore, any images can be used as mask file and any 2
numeric columns of a binary table file can be binned as image, so as mask file.

The mask filtering is to apply mask image in Boolean operation on events data
array (FITS table columns or image), as any zero or non-zero values of mask data are
treated as byte type O and 1. The mask is stored as part of the data subspace in the
output. Regardless of the input data-type, the stored mask is always written byte type
images in O or 1.

The Mask subspace in any output from mask filtering contains two parts, region
string containing "MASK’ and the "MASK’ data block extension, as illustarted in fol-
lowing example. string is expressed

Table 1. ’sky’ Subspace Region Filter String

sky Real4 TABLE MASK
MASK(MASK)|MASK(MASK?2)
Field area = 1234567.8 Region area = 1234

2 Helen He, Mark CresitelloDittmar, and Kenny Glotfelty

The "MASK’ and "MASK?2’ inside the parentheses of "MASK()’ above indicate the
named blocks below at Block-5 and Block-6, following the EVENTS and GTTIs blocks,
store the data in bytes, respectively.

Table 2. Data Blockss

Block 2: EVENTS Tabel 15 cols x 985 rows
Block 3: GTI3 Tabel 2colsx7 rows
Block 4: GTI1 Tabel 2 colsx 15 rows
Block 5: MASK Image Byte(20x25)
Block 6: MASK2 Image Byte(40x35)

2. Masks versus Shapes Filtering

DM’’s filtering can be outlined in 3 formats but essentially falling into two types, shapes
and masks. Both shapes and masks have 2-D attributes, but one is parametric geometry
and other’s arbitrary geometry in pixels. Taking ’sky’ as filter descriptor, the 3 filter
formats are

e ’sky=shape(parameters)’: the shape of ’shape()’, as a general term, can be the
recognized shapes, circle, box, rectangle, etc. A ’circle’ filtering is specified
as ’sky=circle(x,y,r)’, where ’(x,y,r)’ is the circle’s center position and radius,
respectively.

o ’‘sky=region(regfile)’: the region tag, 'region()’, is used to let DM library to read
‘regfile’, a region file, which stacks varieties of shapes with include or exclud.

o ’sky=mask(mskfile)’: the *mask()’ tag, like the region syntax, instructs DM li-
brary to read the mask file, mskfile, which defines pixels region. Similarly, mask
filtering also has masks operation in union and intersect when complex filterings
are applied (to be discussed shortly).

Table 3. Mask Filtering Syntax

Mask Region Shape

sky=mask(f) sky=region(f) sky=circle(x,y,r)

exclude sky=mask(f) exclude sky=region(f) exclude sky=circle(x,y.r)
sky=bounds(mask(f)) sky=bounds(region(f)) sky=bounds(circle(x,y,r))
sky=mask(f1), det=mask(f2) sky=region(f1), det=region(f2) sky=circle, det=box
sky=mask(fl)&&sky=region(f2) same as mask same as mask

[lsky=box

List above is the mask filter syntax, aligned are region/shape filter for comparison. The
’f” in the *mask(f)’ and ’region(f)’ represents mask and region file, respectively. The
symbol ’!” in front of filter syntax indicates the syntax is not allowed or unsupported.

Pixel Mask Filtering of CXC Datamodel 3

2.1. Masks Intersect in AND-Operator

Run dmcopy events mask filtering in ’sky’ descriptor, and the output is new events
with a mask data subspace, mask1l. Run dmcopy the new events another mask filtering,
mask2, where the consolidation takes place on mask1 (the existing mask) and mask2
(the run-time mask),

dmcopy ’ evt[sky=mask(mask1)]’ evt_ml
dmcopy ’evt_ml[sky=mask(mask2)]’ evt.copy

the output, evt.copy, has a ’MASK’ block storing the data of mask1&mask2, which are
overlapped. The AND/OR operations can be illustrated through two 3x3 images/matrix

as followed.
1 1 1 1 10
1 1 0->101 0
01 1 01 1

110 111 111
01 0ffl11ol]->l110
11 1)lo 11 111

2.2. Masks Union in OR-Operator

0
0 |&&
1

DM merge tool, dmmgerge, merges several event tables of the same columns into a sin-
gle output table. When the event files contain masks subspaces, the masks are combined
to one mask subspace in the output table, assuming all the events have mask extensions
as ’evtl[maskl1]’, evt2[mask2]’, evt3[mask3]’.

dmmerge infile="evtl,evt2,evt3’ outfile=evt.merged

If all the masks are overlapped, the consolidated output, ’evt.merged’, has one
"MASK’ data subspace, whose mask bounds may be broader to enclose the input masks
being union-ed. Howeever the completed union of this may not always happen as in
following cases.

partial union

Should mask1 and mask3 be overlap but mask2 singled out, the merged output would
have 2 mask subspace components as expressed below, where MASK is the union of
mask1 and mask2, while MASK2 is the copy of mask3.

Component 1: MASK(MASK)
Component 2: MASK(MASK?2)

no-union at all

Should the events have multiple GTIs per CCD, say GTI1, GTI2,GTI3, regardless
masks condition, the merged output would have 3 mask subspace components, MASK,
MASK?2,MASK3 are simply the copies of mask1, mask2 and mask3.

4 Helen He, Mark CresitelloDittmar, and Kenny Glotfelty

Component 1: MASK(MASK)
Component 2: MASK(MASK?2)
Component 3: MASK(MASK3)

3. Mask Binning

Run DM tool on an event file can have both filtering and binning, including mask
filtering. In the masking-and-binning syntax, the binning still follows all the current
CIAO binning syntax, for example, the bin scale must be matching to that of an existing
file (image only) or must be the multiples of the existing image’s scale. Different from
the region/shape filtering, the mask of the mask filtering is also binned accordingly
and stored as an new extension of the output. The algorithm of mask re-binning is to
use logical AND-operation on the the sub-image (or the pixel cell), or should all pixel
values in the pixel cell is 1, the binned pixel/cell is 1 otherwise is 0.

Matching Coordinates

Generate a mask image file, mask.scale2, in bin scale 2. Create two other events images
in bin scales 1 and 2.

dmcopy ’anyevt[bin sky=2]" mask.scale2
dmcopy ’evt[bin sky=1] imgl
dmcopy ’evt[bin sky=2] img2

Command dmcopy the events, img1 and img2, with the same mask filterings,

dmcopy ’imgl[sky=mask(mask.scale2)]’ error.img
dmcopy ’img2[sky=mask(mask.scale2)]’ okay.img

The first masking run fails in mis-matched coordinates of the mask (mask.scale2)
from the events (imgl). The second masking run, it succeeds as matched coordinates
of the mask with the the events (img2).

Bin Scale Multiples

Run dmcopy events masking-and-binning with mask.scale2 file in various bin scales,

dmcopy ’evt[sky=mask(mask.scale2)][bin sky=2]" evt_esl.img
dmcopy ’evt[sky=mask(mask.scale2)][bin sky=4]" evt_es2.img
dmcopy ’evt[sky=mask(mask.scale2)][bin sky=6]" evt_es3.img

All the runs above are succeeded as the bin scales are the multiples of 2 of the
mask’s scale, or 1, 2, 3. But, following binning specs will cause errors because the bin
scales are not the 2’s multiples,

dmcopy ’evt[sky=mask(mask.scale2)][bin sky=3]" error.img
dmcopy ’evt[sky=mask(mask.scale2)][bin sky=5]" error.img

Acknowledgments. The work has been supported by NASA under contract NAS
8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra
X-ray Center.

